单轴负热膨胀Y2Mo4O15:Yb/Nd的热增强近红外上转换发光

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Liuzhen Feng, Haokun Yan, Renfu Li, Yiqi Yu, Yijian Sun, Jinsheng Liao
{"title":"单轴负热膨胀Y2Mo4O15:Yb/Nd的热增强近红外上转换发光","authors":"Liuzhen Feng, Haokun Yan, Renfu Li, Yiqi Yu, Yijian Sun, Jinsheng Liao","doi":"10.1021/acs.inorgchem.4c04556","DOIUrl":null,"url":null,"abstract":"Thermal quenching (TQ) of luminescence presents a significant barrier to the effective use of optical thermometers in high-temperature applications. Herein, we report a novel uniaxial negative thermal expansion (NTE) phosphor, Y<sub>2–2<i>x</i>–2<i>y</i></sub>Mo<sub>4</sub>O<sub>15</sub>:<i>x</i>Yb,<i>y</i>Nd, synthesized by a solid-state reaction. Under 980 nm laser excitation, it exhibits excellent thermally enhanced near-infrared (NIR) upconversion luminescence (UCL) performance. The UCL intensities of Nd<sup>3+</sup> at 573 K were enhanced by 396-fold (750 nm), 57.6-fold (810 nm), and 7.6-fold (882 nm), respectively, compared with that of room temperature. In situ temperature-dependent X-ray diffraction and steady- and transient-state spectra are used to reveal thermal expansion behavior and luminescence mechanism in detail. The thermal enhancement of NIR UCL is attributed to the synergistic effect of increased radiative transition probability due to the anisotropic thermal expansion of the crystal and the enhanced energy transfer (ET) efficiency resulting from uniaxial shrinkage and the phonon-assisted process. Based on the luminescence intensity ratio (LIR) of the thermally coupled energy levels (<sup>4</sup>F<sub>7/2</sub>/<sup>4</sup>F<sub>3/2</sub>), the target sample achieved ultrahigh sensitivity (<i>S</i><sub>r</sub> = 3.0% K<sup>–1</sup> at 298 K) with high repeatability over the entire temperature range. This study not only provides a fresh perspective for achieving thermal enhancement of NIR UCL phosphors using uniaxial negative thermal expansion materials but also presents a novel approach for developing NIR UCL optical thermometers with outstanding temperature performance.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"298 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Enhanced Near-Infrared Upconversion Luminescence in Y2Mo4O15:Yb/Nd with Uniaxial Negative Thermal Expansion\",\"authors\":\"Liuzhen Feng, Haokun Yan, Renfu Li, Yiqi Yu, Yijian Sun, Jinsheng Liao\",\"doi\":\"10.1021/acs.inorgchem.4c04556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal quenching (TQ) of luminescence presents a significant barrier to the effective use of optical thermometers in high-temperature applications. Herein, we report a novel uniaxial negative thermal expansion (NTE) phosphor, Y<sub>2–2<i>x</i>–2<i>y</i></sub>Mo<sub>4</sub>O<sub>15</sub>:<i>x</i>Yb,<i>y</i>Nd, synthesized by a solid-state reaction. Under 980 nm laser excitation, it exhibits excellent thermally enhanced near-infrared (NIR) upconversion luminescence (UCL) performance. The UCL intensities of Nd<sup>3+</sup> at 573 K were enhanced by 396-fold (750 nm), 57.6-fold (810 nm), and 7.6-fold (882 nm), respectively, compared with that of room temperature. In situ temperature-dependent X-ray diffraction and steady- and transient-state spectra are used to reveal thermal expansion behavior and luminescence mechanism in detail. The thermal enhancement of NIR UCL is attributed to the synergistic effect of increased radiative transition probability due to the anisotropic thermal expansion of the crystal and the enhanced energy transfer (ET) efficiency resulting from uniaxial shrinkage and the phonon-assisted process. Based on the luminescence intensity ratio (LIR) of the thermally coupled energy levels (<sup>4</sup>F<sub>7/2</sub>/<sup>4</sup>F<sub>3/2</sub>), the target sample achieved ultrahigh sensitivity (<i>S</i><sub>r</sub> = 3.0% K<sup>–1</sup> at 298 K) with high repeatability over the entire temperature range. This study not only provides a fresh perspective for achieving thermal enhancement of NIR UCL phosphors using uniaxial negative thermal expansion materials but also presents a novel approach for developing NIR UCL optical thermometers with outstanding temperature performance.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"298 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.4c04556\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c04556","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

发光的热猝灭(TQ)是光学温度计在高温应用中有效使用的一个重要障碍。在此,我们报道了一种新的单轴负热膨胀(NTE)荧光粉,Y2-2x-2yMo4O15:xYb,yNd,通过固态反应合成。在980 nm激光激发下,它表现出优异的热增强近红外(NIR)上转换发光性能。与室温相比,573 K下Nd3+的UCL强度分别提高了396倍(750 nm)、57.6倍(810 nm)和7.6倍(882 nm)。利用原位温度相关的x射线衍射和稳态和瞬态光谱详细揭示了热膨胀行为和发光机理。近红外UCL的热增强是由于晶体各向异性热膨胀引起的辐射跃迁概率增加和单轴收缩和声子辅助过程引起的能量传递效率提高的协同效应。基于热耦合能级(4F7/2/4F3/2)的发光强度比(LIR),目标样品在整个温度范围内获得了超高的灵敏度(Sr = 3.0% K - 1, 298 K)和高重复性。该研究不仅为利用单轴负热膨胀材料实现近红外UCL荧光粉的热增强提供了新的视角,而且为开发具有优异温度性能的近红外UCL光学温度计提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal Enhanced Near-Infrared Upconversion Luminescence in Y2Mo4O15:Yb/Nd with Uniaxial Negative Thermal Expansion

Thermal Enhanced Near-Infrared Upconversion Luminescence in Y2Mo4O15:Yb/Nd with Uniaxial Negative Thermal Expansion
Thermal quenching (TQ) of luminescence presents a significant barrier to the effective use of optical thermometers in high-temperature applications. Herein, we report a novel uniaxial negative thermal expansion (NTE) phosphor, Y2–2x–2yMo4O15:xYb,yNd, synthesized by a solid-state reaction. Under 980 nm laser excitation, it exhibits excellent thermally enhanced near-infrared (NIR) upconversion luminescence (UCL) performance. The UCL intensities of Nd3+ at 573 K were enhanced by 396-fold (750 nm), 57.6-fold (810 nm), and 7.6-fold (882 nm), respectively, compared with that of room temperature. In situ temperature-dependent X-ray diffraction and steady- and transient-state spectra are used to reveal thermal expansion behavior and luminescence mechanism in detail. The thermal enhancement of NIR UCL is attributed to the synergistic effect of increased radiative transition probability due to the anisotropic thermal expansion of the crystal and the enhanced energy transfer (ET) efficiency resulting from uniaxial shrinkage and the phonon-assisted process. Based on the luminescence intensity ratio (LIR) of the thermally coupled energy levels (4F7/2/4F3/2), the target sample achieved ultrahigh sensitivity (Sr = 3.0% K–1 at 298 K) with high repeatability over the entire temperature range. This study not only provides a fresh perspective for achieving thermal enhancement of NIR UCL phosphors using uniaxial negative thermal expansion materials but also presents a novel approach for developing NIR UCL optical thermometers with outstanding temperature performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信