Muhammad Suliman, Muhammad Ibrahim, Ebrahem A. Algehyne, Vakkar Ali
{"title":"涉及分布阶算子的广义分数阶反应扩散模型的有效数值求解方法研究及稳定性分析","authors":"Muhammad Suliman, Muhammad Ibrahim, Ebrahem A. Algehyne, Vakkar Ali","doi":"10.1016/j.camwa.2024.12.006","DOIUrl":null,"url":null,"abstract":"In this manuscript, we study a generalized fractional reaction-diffusion model involving a distributed-order operator. An efficient hybrid approach is proposed to solve the presented model. The <ce:italic>L</ce:italic>1 approximation is utilized to discretize the time variable, while the mixed finite element method is employed for spatial discretization. A detailed error and stability analysis of the proposed method is provided. Furthermore, we prove that the computational accuracy achieved by the proposed approach is of order <mml:math altimg=\"si1.svg\"><mml:mi mathvariant=\"script\">O</mml:mi><mml:mo maxsize=\"2.4ex\" minsize=\"2.4ex\" stretchy=\"true\">(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">+</mml:mo><mml:msup><mml:mrow><mml:mo maxsize=\"2.4ex\" minsize=\"2.4ex\" stretchy=\"true\">(</mml:mo><mml:mi mathvariant=\"normal\">Δ</mml:mi><mml:mi>t</mml:mi><mml:mo maxsize=\"2.4ex\" minsize=\"2.4ex\" stretchy=\"true\">)</mml:mo></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">−</mml:mo><mml:msub><mml:mrow><mml:mi>ξ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">max</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msup><mml:mo maxsize=\"2.4ex\" minsize=\"2.4ex\" stretchy=\"true\">)</mml:mo></mml:math>. To validate and evaluate the numerical approach, three numerical experiments are conducted, with results presented through graphs and tables.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of an efficient numerical method for solving the generalized fractional reaction-diffusion model involving a distributed-order operator along with stability analysis\",\"authors\":\"Muhammad Suliman, Muhammad Ibrahim, Ebrahem A. Algehyne, Vakkar Ali\",\"doi\":\"10.1016/j.camwa.2024.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we study a generalized fractional reaction-diffusion model involving a distributed-order operator. An efficient hybrid approach is proposed to solve the presented model. The <ce:italic>L</ce:italic>1 approximation is utilized to discretize the time variable, while the mixed finite element method is employed for spatial discretization. A detailed error and stability analysis of the proposed method is provided. Furthermore, we prove that the computational accuracy achieved by the proposed approach is of order <mml:math altimg=\\\"si1.svg\\\"><mml:mi mathvariant=\\\"script\\\">O</mml:mi><mml:mo maxsize=\\\"2.4ex\\\" minsize=\\\"2.4ex\\\" stretchy=\\\"true\\\">(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo linebreak=\\\"badbreak\\\" linebreakstyle=\\\"after\\\">+</mml:mo><mml:msup><mml:mrow><mml:mo maxsize=\\\"2.4ex\\\" minsize=\\\"2.4ex\\\" stretchy=\\\"true\\\">(</mml:mo><mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi><mml:mi>t</mml:mi><mml:mo maxsize=\\\"2.4ex\\\" minsize=\\\"2.4ex\\\" stretchy=\\\"true\\\">)</mml:mo></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo linebreak=\\\"badbreak\\\" linebreakstyle=\\\"after\\\">−</mml:mo><mml:msub><mml:mrow><mml:mi>ξ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"normal\\\">max</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msup><mml:mo maxsize=\\\"2.4ex\\\" minsize=\\\"2.4ex\\\" stretchy=\\\"true\\\">)</mml:mo></mml:math>. To validate and evaluate the numerical approach, three numerical experiments are conducted, with results presented through graphs and tables.\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.camwa.2024.12.006\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2024.12.006","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A study of an efficient numerical method for solving the generalized fractional reaction-diffusion model involving a distributed-order operator along with stability analysis
In this manuscript, we study a generalized fractional reaction-diffusion model involving a distributed-order operator. An efficient hybrid approach is proposed to solve the presented model. The L1 approximation is utilized to discretize the time variable, while the mixed finite element method is employed for spatial discretization. A detailed error and stability analysis of the proposed method is provided. Furthermore, we prove that the computational accuracy achieved by the proposed approach is of order O(h2+(Δt)3−ξmax). To validate and evaluate the numerical approach, three numerical experiments are conducted, with results presented through graphs and tables.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).