涉及分布阶算子的广义分数阶反应扩散模型的有效数值求解方法研究及稳定性分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Muhammad Suliman, Muhammad Ibrahim, Ebrahem A. Algehyne, Vakkar Ali
{"title":"涉及分布阶算子的广义分数阶反应扩散模型的有效数值求解方法研究及稳定性分析","authors":"Muhammad Suliman, Muhammad Ibrahim, Ebrahem A. Algehyne, Vakkar Ali","doi":"10.1016/j.camwa.2024.12.006","DOIUrl":null,"url":null,"abstract":"In this manuscript, we study a generalized fractional reaction-diffusion model involving a distributed-order operator. An efficient hybrid approach is proposed to solve the presented model. The <ce:italic>L</ce:italic>1 approximation is utilized to discretize the time variable, while the mixed finite element method is employed for spatial discretization. A detailed error and stability analysis of the proposed method is provided. Furthermore, we prove that the computational accuracy achieved by the proposed approach is of order <mml:math altimg=\"si1.svg\"><mml:mi mathvariant=\"script\">O</mml:mi><mml:mo maxsize=\"2.4ex\" minsize=\"2.4ex\" stretchy=\"true\">(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">+</mml:mo><mml:msup><mml:mrow><mml:mo maxsize=\"2.4ex\" minsize=\"2.4ex\" stretchy=\"true\">(</mml:mo><mml:mi mathvariant=\"normal\">Δ</mml:mi><mml:mi>t</mml:mi><mml:mo maxsize=\"2.4ex\" minsize=\"2.4ex\" stretchy=\"true\">)</mml:mo></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo linebreak=\"badbreak\" linebreakstyle=\"after\">−</mml:mo><mml:msub><mml:mrow><mml:mi>ξ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">max</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msup><mml:mo maxsize=\"2.4ex\" minsize=\"2.4ex\" stretchy=\"true\">)</mml:mo></mml:math>. To validate and evaluate the numerical approach, three numerical experiments are conducted, with results presented through graphs and tables.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of an efficient numerical method for solving the generalized fractional reaction-diffusion model involving a distributed-order operator along with stability analysis\",\"authors\":\"Muhammad Suliman, Muhammad Ibrahim, Ebrahem A. Algehyne, Vakkar Ali\",\"doi\":\"10.1016/j.camwa.2024.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript, we study a generalized fractional reaction-diffusion model involving a distributed-order operator. An efficient hybrid approach is proposed to solve the presented model. The <ce:italic>L</ce:italic>1 approximation is utilized to discretize the time variable, while the mixed finite element method is employed for spatial discretization. A detailed error and stability analysis of the proposed method is provided. Furthermore, we prove that the computational accuracy achieved by the proposed approach is of order <mml:math altimg=\\\"si1.svg\\\"><mml:mi mathvariant=\\\"script\\\">O</mml:mi><mml:mo maxsize=\\\"2.4ex\\\" minsize=\\\"2.4ex\\\" stretchy=\\\"true\\\">(</mml:mo><mml:msup><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo linebreak=\\\"badbreak\\\" linebreakstyle=\\\"after\\\">+</mml:mo><mml:msup><mml:mrow><mml:mo maxsize=\\\"2.4ex\\\" minsize=\\\"2.4ex\\\" stretchy=\\\"true\\\">(</mml:mo><mml:mi mathvariant=\\\"normal\\\">Δ</mml:mi><mml:mi>t</mml:mi><mml:mo maxsize=\\\"2.4ex\\\" minsize=\\\"2.4ex\\\" stretchy=\\\"true\\\">)</mml:mo></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo linebreak=\\\"badbreak\\\" linebreakstyle=\\\"after\\\">−</mml:mo><mml:msub><mml:mrow><mml:mi>ξ</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"normal\\\">max</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msup><mml:mo maxsize=\\\"2.4ex\\\" minsize=\\\"2.4ex\\\" stretchy=\\\"true\\\">)</mml:mo></mml:math>. To validate and evaluate the numerical approach, three numerical experiments are conducted, with results presented through graphs and tables.\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.camwa.2024.12.006\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2024.12.006","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个涉及分布阶算子的广义分数反应扩散模型。提出了一种有效的混合方法来求解该模型。采用L1近似对时间变量进行离散,采用混合有限元法对空间变量进行离散。对该方法进行了详细的误差分析和稳定性分析。此外,我们证明了该方法的计算精度为O(h2+(Δt)3−ξmax)阶。为了验证和评价数值方法,进行了三个数值实验,并以图表的形式给出了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of an efficient numerical method for solving the generalized fractional reaction-diffusion model involving a distributed-order operator along with stability analysis
In this manuscript, we study a generalized fractional reaction-diffusion model involving a distributed-order operator. An efficient hybrid approach is proposed to solve the presented model. The L1 approximation is utilized to discretize the time variable, while the mixed finite element method is employed for spatial discretization. A detailed error and stability analysis of the proposed method is provided. Furthermore, we prove that the computational accuracy achieved by the proposed approach is of order O(h2+(Δt)3ξmax). To validate and evaluate the numerical approach, three numerical experiments are conducted, with results presented through graphs and tables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信