具有高阶Burgers型非线性Sobolev方程的一种新型能量耗散非协调Crank-Nicolson有限元法的无条件超收敛分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Tiantian Liang , Dongyang Shi
{"title":"具有高阶Burgers型非线性Sobolev方程的一种新型能量耗散非协调Crank-Nicolson有限元法的无条件超收敛分析","authors":"Tiantian Liang ,&nbsp;Dongyang Shi","doi":"10.1016/j.camwa.2024.12.010","DOIUrl":null,"url":null,"abstract":"<div><div>A novel energy dissipation Crank-Nicolson (C-N) fully discrete scheme is established by low order nonconforming <span><math><mi>E</mi><msubsup><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>r</mi><mi>o</mi><mi>t</mi></mrow></msubsup></math></span> element for solving the Sobolev equations with high order Burgers' type nonlinearity. Firstly, the boundedness of the discrete solution in the broken <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm is achieved directly by the energy dissipation property without using the known time-space splitting technique in the existing literatures, and its well-posedness is demonstrated by the Brouwer fixed point theorem. Secondly, by utilizing the special characters of nonconforming <span><math><mi>E</mi><msubsup><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>r</mi><mi>o</mi><mi>t</mi></mrow></msubsup></math></span> element, the unconditional superclose result of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in the broken <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm is gained strictly with no restrictions between the spatial partition parameter <em>h</em> and the time step <em>τ</em>. Moreover, the corresponding global superconvergent error estimate of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> is proved by applying an interpolation post-processing approach. Thirdly, an application to some different finite elements and nonlinear PDEs is discussed, which shows that the proposed scheme and the analysis presented herein can be considered as a general framework to cope with. Lastly, the theoretical results are validated by four numerical examples.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"180 ","pages":"Pages 86-101"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditional superconvergence analysis of a novel energy dissipation nonconforming Crank-Nicolson FEM for Sobolev equations with high order Burgers' type nonlinearity\",\"authors\":\"Tiantian Liang ,&nbsp;Dongyang Shi\",\"doi\":\"10.1016/j.camwa.2024.12.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel energy dissipation Crank-Nicolson (C-N) fully discrete scheme is established by low order nonconforming <span><math><mi>E</mi><msubsup><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>r</mi><mi>o</mi><mi>t</mi></mrow></msubsup></math></span> element for solving the Sobolev equations with high order Burgers' type nonlinearity. Firstly, the boundedness of the discrete solution in the broken <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm is achieved directly by the energy dissipation property without using the known time-space splitting technique in the existing literatures, and its well-posedness is demonstrated by the Brouwer fixed point theorem. Secondly, by utilizing the special characters of nonconforming <span><math><mi>E</mi><msubsup><mrow><mi>Q</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>r</mi><mi>o</mi><mi>t</mi></mrow></msubsup></math></span> element, the unconditional superclose result of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in the broken <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm is gained strictly with no restrictions between the spatial partition parameter <em>h</em> and the time step <em>τ</em>. Moreover, the corresponding global superconvergent error estimate of order <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> is proved by applying an interpolation post-processing approach. Thirdly, an application to some different finite elements and nonlinear PDEs is discussed, which shows that the proposed scheme and the analysis presented herein can be considered as a general framework to cope with. Lastly, the theoretical results are validated by four numerical examples.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"180 \",\"pages\":\"Pages 86-101\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124005558\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124005558","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

针对具有高阶Burgers型非线性的Sobolev方程,利用低阶不协调EQ1rot元建立了一种新的能量耗散Crank-Nicolson (C-N)全离散格式。首先,不使用现有文献中已知的时空分裂技术,直接利用能量耗散特性获得了h1 -范数破碎离散解的有界性,并利用browwer不动点定理证明了其适定性;其次,利用非一致性EQ1rot元的特殊性质,在空间划分参数h与时间步长τ之间没有限制的情况下,严格地得到了破碎h1范数O(h2+τ2)阶的无条件超接近结果。此外,应用插值后处理方法证明了相应的O(h2+τ2)阶全局超收敛误差估计。第三,讨论了几种不同的有限元和非线性偏微分方程的应用,表明本文提出的方案和分析可以作为一个通用的框架来处理。最后,通过4个算例对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconditional superconvergence analysis of a novel energy dissipation nonconforming Crank-Nicolson FEM for Sobolev equations with high order Burgers' type nonlinearity
A novel energy dissipation Crank-Nicolson (C-N) fully discrete scheme is established by low order nonconforming EQ1rot element for solving the Sobolev equations with high order Burgers' type nonlinearity. Firstly, the boundedness of the discrete solution in the broken H1-norm is achieved directly by the energy dissipation property without using the known time-space splitting technique in the existing literatures, and its well-posedness is demonstrated by the Brouwer fixed point theorem. Secondly, by utilizing the special characters of nonconforming EQ1rot element, the unconditional superclose result of order O(h2+τ2) in the broken H1-norm is gained strictly with no restrictions between the spatial partition parameter h and the time step τ. Moreover, the corresponding global superconvergent error estimate of order O(h2+τ2) is proved by applying an interpolation post-processing approach. Thirdly, an application to some different finite elements and nonlinear PDEs is discussed, which shows that the proposed scheme and the analysis presented herein can be considered as a general framework to cope with. Lastly, the theoretical results are validated by four numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信