正则对数Schrödinger方程的能量守恒rk - fem

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Changhui Yao, Lei Li, Huijun Fan, Yanmin Zhao
{"title":"正则对数Schrödinger方程的能量守恒rk - fem","authors":"Changhui Yao, Lei Li, Huijun Fan, Yanmin Zhao","doi":"10.1016/j.camwa.2024.12.009","DOIUrl":null,"url":null,"abstract":"A high-order implicit–explicit (IMEX) finite element method with energy conservation is constructed to solve the regularized logarithmic Schrödinger equation (RLogSE) with a periodic boundary condition. The discrete scheme consists of the relaxation-extrapolated Runge–Kutta (RERK) method in the temporal direction and the finite element method in the spatial direction. Choosing a proper relaxation parameter for the RERK method is the key technique for energy conservation. The optimal error estimates in the <mml:math altimg=\"si1.svg\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>-norm and <mml:math altimg=\"si2.svg\"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-norm are provided without any restrictions between time step size <ce:italic>τ</ce:italic> and mesh size <ce:italic>h</ce:italic> by temporal–spatial splitting technology. Numerical examples are given to demonstrate the theoretical results.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"23 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-preserving RERK-FEM for the regularized logarithmic Schrödinger equation\",\"authors\":\"Changhui Yao, Lei Li, Huijun Fan, Yanmin Zhao\",\"doi\":\"10.1016/j.camwa.2024.12.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A high-order implicit–explicit (IMEX) finite element method with energy conservation is constructed to solve the regularized logarithmic Schrödinger equation (RLogSE) with a periodic boundary condition. The discrete scheme consists of the relaxation-extrapolated Runge–Kutta (RERK) method in the temporal direction and the finite element method in the spatial direction. Choosing a proper relaxation parameter for the RERK method is the key technique for energy conservation. The optimal error estimates in the <mml:math altimg=\\\"si1.svg\\\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>-norm and <mml:math altimg=\\\"si2.svg\\\"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-norm are provided without any restrictions between time step size <ce:italic>τ</ce:italic> and mesh size <ce:italic>h</ce:italic> by temporal–spatial splitting technology. Numerical examples are given to demonstrate the theoretical results.\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.camwa.2024.12.009\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2024.12.009","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

针对具有周期边界条件的正则对数Schrödinger方程(RLogSE),构造了一种具有能量守恒的高阶隐显有限元方法。离散格式包括时间方向上的松弛外推龙格-库塔(RERK)法和空间方向上的有限元法。选择合适的松弛参数是实现能量守恒的关键技术。利用时空分割技术,在不受时间步长τ和网格尺寸h限制的情况下,给出了l2范数和h1范数的最优误差估计。数值算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-preserving RERK-FEM for the regularized logarithmic Schrödinger equation
A high-order implicit–explicit (IMEX) finite element method with energy conservation is constructed to solve the regularized logarithmic Schrödinger equation (RLogSE) with a periodic boundary condition. The discrete scheme consists of the relaxation-extrapolated Runge–Kutta (RERK) method in the temporal direction and the finite element method in the spatial direction. Choosing a proper relaxation parameter for the RERK method is the key technique for energy conservation. The optimal error estimates in the L2-norm and H1-norm are provided without any restrictions between time step size τ and mesh size h by temporal–spatial splitting technology. Numerical examples are given to demonstrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信