纳米sio2对负温水泥浆体长期性能影响的实验研究

IF 10.8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Shuai Bai , Lingbo Yu , Xinchun Guan , Hui Li
{"title":"纳米sio2对负温水泥浆体长期性能影响的实验研究","authors":"Shuai Bai ,&nbsp;Lingbo Yu ,&nbsp;Xinchun Guan ,&nbsp;Hui Li","doi":"10.1016/j.cemconcomp.2024.105916","DOIUrl":null,"url":null,"abstract":"<div><div>The current research on the application of nanomaterials in concrete is mainly carried out under positive-temperature curing conditions, while research under negative-temperature curing conditions is very scarce. This paper investigated the effect of nano-SiO<sub>2</sub> on long-term strength and chloride diffusivity of cement pastes cured at negative temperature (−5 °C). Thermogravimetric analysis (TGA) confirms that the low-dosage nano-SiO<sub>2</sub> can still exert the pozzolanic effect within negative-temperature cement paste even after 120 days. The macro results show that low-dosage nano-SiO<sub>2</sub> effectively shortens the curing age required for strength and durability development. It is further proved that compared to the promotion effect of nano-SiO<sub>2</sub> on hydration, the optimization of internal pore structure by nano-SiO<sub>2</sub> plays the dominant role in shortening the curing age required. Furthermore, it is found that the low sensitivity of strength to the microstructure results in the insignificant effect of nano-SiO<sub>2</sub> on the long-term strength. In contrast, nano-SiO<sub>2</sub> can effectively improve the long-term chloride permeability resistance through increasing the tortuosity of pore structure and decreasing the critical pore diameter and threshold pore diameter.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"157 ","pages":"Article 105916"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the effect of nano-SiO2 on long-term properties of negative-temperature cement paste\",\"authors\":\"Shuai Bai ,&nbsp;Lingbo Yu ,&nbsp;Xinchun Guan ,&nbsp;Hui Li\",\"doi\":\"10.1016/j.cemconcomp.2024.105916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current research on the application of nanomaterials in concrete is mainly carried out under positive-temperature curing conditions, while research under negative-temperature curing conditions is very scarce. This paper investigated the effect of nano-SiO<sub>2</sub> on long-term strength and chloride diffusivity of cement pastes cured at negative temperature (−5 °C). Thermogravimetric analysis (TGA) confirms that the low-dosage nano-SiO<sub>2</sub> can still exert the pozzolanic effect within negative-temperature cement paste even after 120 days. The macro results show that low-dosage nano-SiO<sub>2</sub> effectively shortens the curing age required for strength and durability development. It is further proved that compared to the promotion effect of nano-SiO<sub>2</sub> on hydration, the optimization of internal pore structure by nano-SiO<sub>2</sub> plays the dominant role in shortening the curing age required. Furthermore, it is found that the low sensitivity of strength to the microstructure results in the insignificant effect of nano-SiO<sub>2</sub> on the long-term strength. In contrast, nano-SiO<sub>2</sub> can effectively improve the long-term chloride permeability resistance through increasing the tortuosity of pore structure and decreasing the critical pore diameter and threshold pore diameter.</div></div>\",\"PeriodicalId\":9865,\"journal\":{\"name\":\"Cement & concrete composites\",\"volume\":\"157 \",\"pages\":\"Article 105916\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement & concrete composites\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095894652400489X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095894652400489X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前纳米材料在混凝土中的应用研究主要是在正温养护条件下进行的,而在负温养护条件下的研究非常少。研究了纳米sio2对负温度(-5℃)养护水泥浆体长期强度和氯离子扩散系数的影响。热重分析(TGA)证实,低剂量纳米sio2在负温度水泥浆体中,即使在120天后仍能发挥火山灰效应。宏观结果表明,低剂量的纳米sio2有效缩短了强度和耐久性发展所需的固化时间。进一步证明,与纳米sio2对水化的促进作用相比,纳米sio2对内部孔隙结构的优化在缩短养护龄期方面起主导作用。此外,由于强度对微观结构的敏感性较低,纳米sio2对长期强度的影响不明显。相比之下,纳米sio2可以通过增加孔隙结构的扭曲度,降低临界孔径和阈值孔径,有效提高长期抗氯化物渗透能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental study on the effect of nano-SiO2 on long-term properties of negative-temperature cement paste
The current research on the application of nanomaterials in concrete is mainly carried out under positive-temperature curing conditions, while research under negative-temperature curing conditions is very scarce. This paper investigated the effect of nano-SiO2 on long-term strength and chloride diffusivity of cement pastes cured at negative temperature (−5 °C). Thermogravimetric analysis (TGA) confirms that the low-dosage nano-SiO2 can still exert the pozzolanic effect within negative-temperature cement paste even after 120 days. The macro results show that low-dosage nano-SiO2 effectively shortens the curing age required for strength and durability development. It is further proved that compared to the promotion effect of nano-SiO2 on hydration, the optimization of internal pore structure by nano-SiO2 plays the dominant role in shortening the curing age required. Furthermore, it is found that the low sensitivity of strength to the microstructure results in the insignificant effect of nano-SiO2 on the long-term strength. In contrast, nano-SiO2 can effectively improve the long-term chloride permeability resistance through increasing the tortuosity of pore structure and decreasing the critical pore diameter and threshold pore diameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement & concrete composites
Cement & concrete composites 工程技术-材料科学:复合
CiteScore
18.70
自引率
11.40%
发文量
459
审稿时长
65 days
期刊介绍: Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信