用保角映射和aaa最小二乘法模拟野火蔓延和火点合并

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Samuel J. Harris, N.R. McDonald
{"title":"用保角映射和aaa最小二乘法模拟野火蔓延和火点合并","authors":"Samuel J. Harris,&nbsp;N.R. McDonald","doi":"10.1016/j.envsoft.2024.106303","DOIUrl":null,"url":null,"abstract":"<div><div>A two-dimensional model of wildfire spread and merger is presented. Three features affect the wildfire propagation: (i) a constant basic rate of spread term accounting for radiative and convective heat transfer, (ii) the unidirectional, constant ambient wind, and (iii) a fire-induced pyrogenic wind. Two numerical methods are proposed to solve for the pyrogenic potential. The first utilises the conformal invariance of Laplace’s equation, reducing the wildfire system to a single Polubarinova–Galin type equation. The second method uses a AAA-least squares method to find a rational approximation of the pyrogenic potential. Various wildfire scenarios are presented and the effects of the pyrogenic wind and the radiative/convective basic rate of spread terms investigated. Firebreaks such as roads and lakes are also included and solutions are found to match well with existing numerical and experimental results. The methods proposed in this work are suitably fast and new to the field of wildfire modelling.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"185 ","pages":"Article 106303"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling wildfire spread and spotfire merger using conformal mapping and AAA-least squares methods\",\"authors\":\"Samuel J. Harris,&nbsp;N.R. McDonald\",\"doi\":\"10.1016/j.envsoft.2024.106303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A two-dimensional model of wildfire spread and merger is presented. Three features affect the wildfire propagation: (i) a constant basic rate of spread term accounting for radiative and convective heat transfer, (ii) the unidirectional, constant ambient wind, and (iii) a fire-induced pyrogenic wind. Two numerical methods are proposed to solve for the pyrogenic potential. The first utilises the conformal invariance of Laplace’s equation, reducing the wildfire system to a single Polubarinova–Galin type equation. The second method uses a AAA-least squares method to find a rational approximation of the pyrogenic potential. Various wildfire scenarios are presented and the effects of the pyrogenic wind and the radiative/convective basic rate of spread terms investigated. Firebreaks such as roads and lakes are also included and solutions are found to match well with existing numerical and experimental results. The methods proposed in this work are suitably fast and new to the field of wildfire modelling.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"185 \",\"pages\":\"Article 106303\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224003645\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003645","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

提出了野火蔓延与合并的二维模型。影响野火传播的三个特征:(i)考虑辐射和对流传热的恒定基本传播率项,(ii)单向恒定的环境风,以及(iii)火灾诱发的热原风。提出了两种求解热原势的数值方法。第一种方法利用拉普拉斯方程的保形不变性,将野火系统简化为一个单一的Polubarinova-Galin型方程。第二种方法采用aaa最小二乘法求热原势的有理近似。提出了不同的野火情景,并研究了热原风和辐射/对流基本传播率的影响。还包括道路和湖泊等防火屏障,并发现解决方案与现有的数值和实验结果相匹配。本文提出的方法对于野火建模领域来说是非常快速和新颖的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modelling wildfire spread and spotfire merger using conformal mapping and AAA-least squares methods

Modelling wildfire spread and spotfire merger using conformal mapping and AAA-least squares methods
A two-dimensional model of wildfire spread and merger is presented. Three features affect the wildfire propagation: (i) a constant basic rate of spread term accounting for radiative and convective heat transfer, (ii) the unidirectional, constant ambient wind, and (iii) a fire-induced pyrogenic wind. Two numerical methods are proposed to solve for the pyrogenic potential. The first utilises the conformal invariance of Laplace’s equation, reducing the wildfire system to a single Polubarinova–Galin type equation. The second method uses a AAA-least squares method to find a rational approximation of the pyrogenic potential. Various wildfire scenarios are presented and the effects of the pyrogenic wind and the radiative/convective basic rate of spread terms investigated. Firebreaks such as roads and lakes are also included and solutions are found to match well with existing numerical and experimental results. The methods proposed in this work are suitably fast and new to the field of wildfire modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信