下沉或破碎:石油增加了浮游植物聚集体对破碎的抵抗力

IF 5.1 2区 地球科学 Q1 LIMNOLOGY
Kai Ziervogel, Julia A. Sweet, Yixuan Song, Laura Bretherton, Matthew J. Rau, Antonietta Quigg, Uta Passow
{"title":"下沉或破碎:石油增加了浮游植物聚集体对破碎的抵抗力","authors":"Kai Ziervogel, Julia A. Sweet, Yixuan Song, Laura Bretherton, Matthew J. Rau, Antonietta Quigg, Uta Passow","doi":"10.1002/lol2.10454","DOIUrl":null,"url":null,"abstract":"Fragmentation of marine snow affects the downward flux of organic matter, and other aggregate‐associated compounds such as oil. Using phytoplankton aggregates, we demonstrate that marine snow with oil, termed marine oil snow, had a higher resistance to fragmentation compared to marine snow without oil when exposed to turbulence ex situ. At moderate shear levels, typical of the ocean mixed layer, 17% of marine snow without oil broke, whereas 63% of marine snow fragmented at intermediate shear. In contrast, only 17% and 33% of marine oil snow fragmented at the intermediate and highest shear levels, respectively. Our results suggest that oil increases the cohesion and stability of aggregates making them less susceptible to breaking. This work contributes toward explaining the exceptional oil sedimentation event following the 2010 spill in Gulf of Mexico. It also enhances our understanding of the factors that determine the probability of sinking aggregates to fragment.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"86 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sink or break: Oil increases resistance of phytoplankton aggregates to fragmentation\",\"authors\":\"Kai Ziervogel, Julia A. Sweet, Yixuan Song, Laura Bretherton, Matthew J. Rau, Antonietta Quigg, Uta Passow\",\"doi\":\"10.1002/lol2.10454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fragmentation of marine snow affects the downward flux of organic matter, and other aggregate‐associated compounds such as oil. Using phytoplankton aggregates, we demonstrate that marine snow with oil, termed marine oil snow, had a higher resistance to fragmentation compared to marine snow without oil when exposed to turbulence ex situ. At moderate shear levels, typical of the ocean mixed layer, 17% of marine snow without oil broke, whereas 63% of marine snow fragmented at intermediate shear. In contrast, only 17% and 33% of marine oil snow fragmented at the intermediate and highest shear levels, respectively. Our results suggest that oil increases the cohesion and stability of aggregates making them less susceptible to breaking. This work contributes toward explaining the exceptional oil sedimentation event following the 2010 spill in Gulf of Mexico. It also enhances our understanding of the factors that determine the probability of sinking aggregates to fragment.\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/lol2.10454\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/lol2.10454","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

海洋雪的破碎影响了有机物和其他聚集体相关化合物(如油)的向下通量。利用浮游植物聚集体,我们证明了含油的海洋雪(称为海洋油雪)在暴露于非原位湍流时比不含油的海洋雪具有更高的抗破碎性。在中等切变水平,即典型的海洋混合层,17%的无油海洋雪破裂,而在中等切变水平,63%的海洋雪破碎。相比之下,只有17%和33%的海洋油雪在中切变水平和最高切变水平下破碎。我们的研究结果表明,油增加了聚集体的凝聚力和稳定性,使它们不易破碎。这项工作有助于解释2010年墨西哥湾漏油事件后的特殊石油沉积事件。它还增强了我们对决定沉降聚集体破碎概率的因素的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sink or break: Oil increases resistance of phytoplankton aggregates to fragmentation
Fragmentation of marine snow affects the downward flux of organic matter, and other aggregate‐associated compounds such as oil. Using phytoplankton aggregates, we demonstrate that marine snow with oil, termed marine oil snow, had a higher resistance to fragmentation compared to marine snow without oil when exposed to turbulence ex situ. At moderate shear levels, typical of the ocean mixed layer, 17% of marine snow without oil broke, whereas 63% of marine snow fragmented at intermediate shear. In contrast, only 17% and 33% of marine oil snow fragmented at the intermediate and highest shear levels, respectively. Our results suggest that oil increases the cohesion and stability of aggregates making them less susceptible to breaking. This work contributes toward explaining the exceptional oil sedimentation event following the 2010 spill in Gulf of Mexico. It also enhances our understanding of the factors that determine the probability of sinking aggregates to fragment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.80%
发文量
63
审稿时长
25 weeks
期刊介绍: Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信