基于三维地质模型与数值动力学模拟相结合的深部潜力矿机器学习预测与解释——以铜陵铜矿区冬瓜山矿田为例

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Feihu Zhou, Liangming Liu
{"title":"基于三维地质模型与数值动力学模拟相结合的深部潜力矿机器学习预测与解释——以铜陵铜矿区冬瓜山矿田为例","authors":"Feihu Zhou, Liangming Liu","doi":"10.1007/s11053-024-10430-5","DOIUrl":null,"url":null,"abstract":"<p>The complex geological architecture, complicated dynamics processes and nonlinear association in mineral systems are the major intrinsic hindrances to predictive mineral exploration. For effectively overcoming such difficulties to achieve credible prediction, 3D geological modeling, numerical dynamics simulation (NDS) and machine learning (ML) were applied to characterize the complex geological architecture, to replay the complicated dynamics processes and to predict mineralization-favor spaces by extracting nonlinear association of multi-features with mineralization in the Dongguashan orefield. The method of SHapley Additive exPlanations (SHAP) was used to explain the correlations between different features and mineralization in the predictive model. The results of the 3D geological modeling revealed that the orebodies are unevenly distributed around the intrusion and closely related to the features of the intrusion’s contact zone and wall rocks. The 3D distribution of resistivity can provide some evidence to infer underground geological architecture rather than a threshold to separate orebodies from wall rocks. The NDS results showed that dilation zones developed around the intrusion and within some beds, being closely associated with the known orebodies. By applying the most popular ML algorithm, random forest, and combining different geological, geophysical and dynamics features as evidence variables, eight ML models were run to predict potential orebodies. The predictive model performance on the test samples indicates that the integration of dynamics evidence with geological evidence significantly improves the predictive capacity of the ML model. The SHAP values demonstrate that volumetric strain is the most important feature, while the inclination of the contact zone has the greatest positive contribution to the predictions. The SHAP values of variable interactions indicate that complex intrusion contact zones and low-pressure, high-dilation areas are closely related to mineralization. The 3D ML prediction evidenced synthetically by geological, geophysical and geodynamical features demonstrates that there are substantial potential ores at depth of the northern east and southern east parts of the orefield.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"86 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Prediction of Deep Potential Ores and its Explanation Based on Integration of 3D Geological Model and Numerical Dynamics Simulation: An Example from Dongguashan Orefield, Tongling Copper District, China\",\"authors\":\"Feihu Zhou, Liangming Liu\",\"doi\":\"10.1007/s11053-024-10430-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The complex geological architecture, complicated dynamics processes and nonlinear association in mineral systems are the major intrinsic hindrances to predictive mineral exploration. For effectively overcoming such difficulties to achieve credible prediction, 3D geological modeling, numerical dynamics simulation (NDS) and machine learning (ML) were applied to characterize the complex geological architecture, to replay the complicated dynamics processes and to predict mineralization-favor spaces by extracting nonlinear association of multi-features with mineralization in the Dongguashan orefield. The method of SHapley Additive exPlanations (SHAP) was used to explain the correlations between different features and mineralization in the predictive model. The results of the 3D geological modeling revealed that the orebodies are unevenly distributed around the intrusion and closely related to the features of the intrusion’s contact zone and wall rocks. The 3D distribution of resistivity can provide some evidence to infer underground geological architecture rather than a threshold to separate orebodies from wall rocks. The NDS results showed that dilation zones developed around the intrusion and within some beds, being closely associated with the known orebodies. By applying the most popular ML algorithm, random forest, and combining different geological, geophysical and dynamics features as evidence variables, eight ML models were run to predict potential orebodies. The predictive model performance on the test samples indicates that the integration of dynamics evidence with geological evidence significantly improves the predictive capacity of the ML model. The SHAP values demonstrate that volumetric strain is the most important feature, while the inclination of the contact zone has the greatest positive contribution to the predictions. The SHAP values of variable interactions indicate that complex intrusion contact zones and low-pressure, high-dilation areas are closely related to mineralization. The 3D ML prediction evidenced synthetically by geological, geophysical and geodynamical features demonstrates that there are substantial potential ores at depth of the northern east and southern east parts of the orefield.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10430-5\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10430-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

复杂的地质构造、复杂的动力过程和成矿系统的非线性关联是预测找矿的主要内在障碍。为有效克服这些困难,实现可信预测,采用三维地质建模、数值动力学模拟(NDS)和机器学习(ML)技术对冬虫山矿田复杂地质构造进行表征,重播复杂动力学过程,提取多特征与矿化的非线性关联,预测成矿有利空间。采用SHapley加性解释(SHAP)方法解释预测模型中不同特征与矿化之间的相关性。三维地质建模结果表明,矿体在侵入体周围分布不均匀,且与侵入体接触带和围岩特征密切相关。电阻率的三维分布可以提供一些推断地下地质构造的证据,而不是将矿体与围岩分离的阈值。NDS结果表明,扩张带在侵入体周围及部分层内发育,与已知矿体密切相关。采用最流行的机器学习算法随机森林,结合不同的地质、地球物理和动力学特征作为证据变量,运行8个机器学习模型预测潜在矿体。预测模型在测试样品上的性能表明,动力学证据与地质证据的集成显著提高了ML模型的预测能力。SHAP值表明,体积应变是最重要的特征,而接触区的倾角对预测的正贡献最大。变量相互作用的SHAP值表明,复杂侵入接触带和低压、高膨胀区与成矿关系密切。地质、地球物理和地球动力学特征综合验证的三维ML预测表明,矿田北部东部和南部东部深度存在大量潜在矿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Prediction of Deep Potential Ores and its Explanation Based on Integration of 3D Geological Model and Numerical Dynamics Simulation: An Example from Dongguashan Orefield, Tongling Copper District, China

The complex geological architecture, complicated dynamics processes and nonlinear association in mineral systems are the major intrinsic hindrances to predictive mineral exploration. For effectively overcoming such difficulties to achieve credible prediction, 3D geological modeling, numerical dynamics simulation (NDS) and machine learning (ML) were applied to characterize the complex geological architecture, to replay the complicated dynamics processes and to predict mineralization-favor spaces by extracting nonlinear association of multi-features with mineralization in the Dongguashan orefield. The method of SHapley Additive exPlanations (SHAP) was used to explain the correlations between different features and mineralization in the predictive model. The results of the 3D geological modeling revealed that the orebodies are unevenly distributed around the intrusion and closely related to the features of the intrusion’s contact zone and wall rocks. The 3D distribution of resistivity can provide some evidence to infer underground geological architecture rather than a threshold to separate orebodies from wall rocks. The NDS results showed that dilation zones developed around the intrusion and within some beds, being closely associated with the known orebodies. By applying the most popular ML algorithm, random forest, and combining different geological, geophysical and dynamics features as evidence variables, eight ML models were run to predict potential orebodies. The predictive model performance on the test samples indicates that the integration of dynamics evidence with geological evidence significantly improves the predictive capacity of the ML model. The SHAP values demonstrate that volumetric strain is the most important feature, while the inclination of the contact zone has the greatest positive contribution to the predictions. The SHAP values of variable interactions indicate that complex intrusion contact zones and low-pressure, high-dilation areas are closely related to mineralization. The 3D ML prediction evidenced synthetically by geological, geophysical and geodynamical features demonstrates that there are substantial potential ores at depth of the northern east and southern east parts of the orefield.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信