层叠CoS1.097/V3S4异质结纳米片的构建对钠离子电池反应动力学和循环稳定性的增强

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Jiahui Ma, Fangshun Zhu, Wenwen Li, Quangui Ma, Rajaiah Alexpandi, Yurong Cai, Jiayuan Xiang, Fangfang Tu
{"title":"层叠CoS1.097/V3S4异质结纳米片的构建对钠离子电池反应动力学和循环稳定性的增强","authors":"Jiahui Ma, Fangshun Zhu, Wenwen Li, Quangui Ma, Rajaiah Alexpandi, Yurong Cai, Jiayuan Xiang, Fangfang Tu","doi":"10.1016/j.jallcom.2024.178290","DOIUrl":null,"url":null,"abstract":"In recent years, sodium-ion batteries (SIBs) have gained significant attention as a viable alternative to lithium-ion batteries due to the abundance of sodium, its low cost, and its similar electrochemical behavior compared to lithium. A key approach to enhancing SIB anode performance is designing stable electrode structures that minimize sodium ion-diffusion pathways. In this study, we synthesized a sheet-like stacked CoS<sub>1.097</sub>/V<sub>3</sub>S<sub>4</sub> heterostructure via a hydrothermal method. The CoS<sub>1.097</sub>/V<sub>3</sub>S<sub>4</sub> composite combines the high specific capacity of CoS<sub>1.097</sub> with the excellent cycling stability of V<sub>3</sub>S<sub>4</sub>. Notably, the heterojunction generates an integrated electric field that reduces activation energy, accelerates charge transfer, and enhances reaction kinetics. The CoS<sub>1.097</sub>/V<sub>3</sub>S<sub>4</sub> heterostructure exhibits an initial discharge capacity of 833.8 mAh g⁻¹ at 0.5<!-- --> <!-- -->A<!-- --> <!-- -->g⁻¹ and a reversible capacity of 505.8 mAh g⁻¹ after 100 cycles. Impressively, even at a high current density of 5<!-- --> <!-- -->A<!-- --> <!-- -->g⁻¹, the electrode retains a capacity of 330.8 mAh g⁻¹ after 1000 cycles. This study demonstrates a promising approach for developing SIB anode materials with superior performance, high reversibility, and long-term cycling durability, supported by the synergistic effect of the CoS<sub>1.097</sub>/V<sub>3</sub>S<sub>4</sub> heterojunction.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"25 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of stacked CoS1.097/V3S4 heterojunction nanosheets towards the enhanced reaction kinetics and cycling stability of sodium-ion batteries\",\"authors\":\"Jiahui Ma, Fangshun Zhu, Wenwen Li, Quangui Ma, Rajaiah Alexpandi, Yurong Cai, Jiayuan Xiang, Fangfang Tu\",\"doi\":\"10.1016/j.jallcom.2024.178290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, sodium-ion batteries (SIBs) have gained significant attention as a viable alternative to lithium-ion batteries due to the abundance of sodium, its low cost, and its similar electrochemical behavior compared to lithium. A key approach to enhancing SIB anode performance is designing stable electrode structures that minimize sodium ion-diffusion pathways. In this study, we synthesized a sheet-like stacked CoS<sub>1.097</sub>/V<sub>3</sub>S<sub>4</sub> heterostructure via a hydrothermal method. The CoS<sub>1.097</sub>/V<sub>3</sub>S<sub>4</sub> composite combines the high specific capacity of CoS<sub>1.097</sub> with the excellent cycling stability of V<sub>3</sub>S<sub>4</sub>. Notably, the heterojunction generates an integrated electric field that reduces activation energy, accelerates charge transfer, and enhances reaction kinetics. The CoS<sub>1.097</sub>/V<sub>3</sub>S<sub>4</sub> heterostructure exhibits an initial discharge capacity of 833.8 mAh g⁻¹ at 0.5<!-- --> <!-- -->A<!-- --> <!-- -->g⁻¹ and a reversible capacity of 505.8 mAh g⁻¹ after 100 cycles. Impressively, even at a high current density of 5<!-- --> <!-- -->A<!-- --> <!-- -->g⁻¹, the electrode retains a capacity of 330.8 mAh g⁻¹ after 1000 cycles. This study demonstrates a promising approach for developing SIB anode materials with superior performance, high reversibility, and long-term cycling durability, supported by the synergistic effect of the CoS<sub>1.097</sub>/V<sub>3</sub>S<sub>4</sub> heterojunction.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2024.178290\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.178290","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,钠离子电池(SIBs)作为锂离子电池的可行替代品受到了极大的关注,因为钠含量丰富,成本低,并且与锂相比具有相似的电化学行为。提高SIB阳极性能的关键方法是设计稳定的电极结构,使钠离子扩散途径最小化。在本研究中,我们通过水热法合成了片状堆叠的CoS1.097/V3S4异质结构。CoS1.097/V3S4复合材料结合了CoS1.097的高比容量和V3S4的优良循环稳定性。值得注意的是,异质结产生了一个集成电场,降低了活化能,加速了电荷转移,提高了反应动力学。CoS1.097/V3S4异质结构在0.5 A g⁻¹时的初始放电容量为833.8 mAh g⁻¹,100次循环后的可逆容量为505.8 mAh g⁻¹。令人印象深刻的是,即使在5毫克(⁻¹)的高电流密度下,电极在1000次循环后仍保持330.8毫安(⁻¹)的容量。在CoS1.097/V3S4异质结的协同作用下,本研究展示了一种具有优异性能、高可逆性和长期循环耐久性的SIB阳极材料的开发方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Construction of stacked CoS1.097/V3S4 heterojunction nanosheets towards the enhanced reaction kinetics and cycling stability of sodium-ion batteries

Construction of stacked CoS1.097/V3S4 heterojunction nanosheets towards the enhanced reaction kinetics and cycling stability of sodium-ion batteries
In recent years, sodium-ion batteries (SIBs) have gained significant attention as a viable alternative to lithium-ion batteries due to the abundance of sodium, its low cost, and its similar electrochemical behavior compared to lithium. A key approach to enhancing SIB anode performance is designing stable electrode structures that minimize sodium ion-diffusion pathways. In this study, we synthesized a sheet-like stacked CoS1.097/V3S4 heterostructure via a hydrothermal method. The CoS1.097/V3S4 composite combines the high specific capacity of CoS1.097 with the excellent cycling stability of V3S4. Notably, the heterojunction generates an integrated electric field that reduces activation energy, accelerates charge transfer, and enhances reaction kinetics. The CoS1.097/V3S4 heterostructure exhibits an initial discharge capacity of 833.8 mAh g⁻¹ at 0.5 A g⁻¹ and a reversible capacity of 505.8 mAh g⁻¹ after 100 cycles. Impressively, even at a high current density of 5 A g⁻¹, the electrode retains a capacity of 330.8 mAh g⁻¹ after 1000 cycles. This study demonstrates a promising approach for developing SIB anode materials with superior performance, high reversibility, and long-term cycling durability, supported by the synergistic effect of the CoS1.097/V3S4 heterojunction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信