抑制Circ0001679通过miR-216/TLR4调节轴减轻缺血/再灌注诱导的脑损伤

Chenrui Zhang, Liaoyu Li, Feng Wang, Hailong Du, Xiaoliang Wang, Xiaoyu Gu, Xinlei Liu, Haie Han, Jianliang Wu, Jianping Sun
{"title":"抑制Circ0001679通过miR-216/TLR4调节轴减轻缺血/再灌注诱导的脑损伤","authors":"Chenrui Zhang, Liaoyu Li, Feng Wang, Hailong Du, Xiaoliang Wang, Xiaoyu Gu, Xinlei Liu, Haie Han, Jianliang Wu, Jianping Sun","doi":"10.2174/0115672026352738241205105129","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stroke, primarily known as ischemic stroke, is a leading cause of mortality and disability worldwide. Reperfusion after the ischemia stroke resolves is necessary for maintaining the health of brain tissues; however, it also induces inflammation and oxidative stress, resulting in brain injury. This study aimed to investigate the role of circ0001679 in the pathology of I/R (Ischemia/Reperfusion)-induced brain injury and explore its therapeutic potential for I/R injury.</p><p><strong>Methods: </strong>The Oxygen-Glucose Deprivation/Re-oxygenation (OGD/R) model was employed in primary mouse astrocytes, and the Middle Cerebral Artery Occlusion (MCAO) model was established in mice to mimic ischemia-reperfusion-induced injury. Si-circ0001679, anti-miR- 216, and TLR4 ORF-clone were transfected either in cells or mice to study the molecular mechanisms during I/R-induced injury. Inflammation and oxidative stress were monitored after treatment.</p><p><strong>Results: </strong>Upregulated gene expression of circ0001679 was noticed in both OGD/R-treated primary mouse astrocytes and MCAO-induced mouse brain tissue. Silencing circ0001679 reduced cellular damage, inflammation, and oxidative stress induced by OGD/R treatment. Knocking down of circ0001679 alone with either miR-216 inhibition or TLR4 overexpression increased the inflammation response and oxidative stress compared to circ0001679 silencing only. Moreover, inhibition of circ0001679 attenuated brain injury in MCAO-treated mice via reduced infarction, neuronal damage, apoptosis, inflammation, and oxidative stress.</p><p><strong>Conclusion: </strong>This study unveiled a novel regulatory axis of circ0001679-miR-216-TLR4 in I/Rinduced brain injury. Targeting circ0001679 may represent a promising therapeutic strategy for I/R-induced brain injury.</p>","PeriodicalId":93965,"journal":{"name":"Current neurovascular research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of Circ0001679 Alleviates Ischemia/Reperfusion-induced Brain Injury via miR-216/TLR4 Regulatory Axis.\",\"authors\":\"Chenrui Zhang, Liaoyu Li, Feng Wang, Hailong Du, Xiaoliang Wang, Xiaoyu Gu, Xinlei Liu, Haie Han, Jianliang Wu, Jianping Sun\",\"doi\":\"10.2174/0115672026352738241205105129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Stroke, primarily known as ischemic stroke, is a leading cause of mortality and disability worldwide. Reperfusion after the ischemia stroke resolves is necessary for maintaining the health of brain tissues; however, it also induces inflammation and oxidative stress, resulting in brain injury. This study aimed to investigate the role of circ0001679 in the pathology of I/R (Ischemia/Reperfusion)-induced brain injury and explore its therapeutic potential for I/R injury.</p><p><strong>Methods: </strong>The Oxygen-Glucose Deprivation/Re-oxygenation (OGD/R) model was employed in primary mouse astrocytes, and the Middle Cerebral Artery Occlusion (MCAO) model was established in mice to mimic ischemia-reperfusion-induced injury. Si-circ0001679, anti-miR- 216, and TLR4 ORF-clone were transfected either in cells or mice to study the molecular mechanisms during I/R-induced injury. Inflammation and oxidative stress were monitored after treatment.</p><p><strong>Results: </strong>Upregulated gene expression of circ0001679 was noticed in both OGD/R-treated primary mouse astrocytes and MCAO-induced mouse brain tissue. Silencing circ0001679 reduced cellular damage, inflammation, and oxidative stress induced by OGD/R treatment. Knocking down of circ0001679 alone with either miR-216 inhibition or TLR4 overexpression increased the inflammation response and oxidative stress compared to circ0001679 silencing only. Moreover, inhibition of circ0001679 attenuated brain injury in MCAO-treated mice via reduced infarction, neuronal damage, apoptosis, inflammation, and oxidative stress.</p><p><strong>Conclusion: </strong>This study unveiled a novel regulatory axis of circ0001679-miR-216-TLR4 in I/Rinduced brain injury. Targeting circ0001679 may represent a promising therapeutic strategy for I/R-induced brain injury.</p>\",\"PeriodicalId\":93965,\"journal\":{\"name\":\"Current neurovascular research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current neurovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672026352738241205105129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current neurovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672026352738241205105129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:中风,主要被称为缺血性中风,是世界范围内死亡和残疾的主要原因。缺血脑卒中消退后的再灌注是维持脑组织健康所必需的;然而,它也会引起炎症和氧化应激,导致脑损伤。本研究旨在探讨circ0001679在I/R(缺血/再灌注)脑损伤病理中的作用,并探讨其治疗I/R损伤的潜力。方法:采用小鼠原代星形胶质细胞氧-葡萄糖剥夺/再氧合(OGD/R)模型,建立小鼠大脑中动脉闭塞(MCAO)模型,模拟缺血再灌注损伤。将Si-circ0001679、anti-miR- 216和TLR4 orf克隆转染细胞或小鼠,研究I/ r诱导损伤的分子机制。治疗后监测炎症和氧化应激。结果:在OGD/ r处理的小鼠原代星形胶质细胞和mcao诱导的小鼠脑组织中,circ0001679基因表达均出现上调。沉默circ0001679可降低OGD/R治疗引起的细胞损伤、炎症和氧化应激。与仅沉默circ0001679相比,单独敲除circ0001679并抑制miR-216或TLR4过表达均可增加炎症反应和氧化应激。此外,抑制circ0001679通过减少梗死、神经元损伤、细胞凋亡、炎症和氧化应激来减轻mcao处理小鼠的脑损伤。结论:本研究揭示了circ0001679-miR-216-TLR4在I/ r诱导脑损伤中的一个新的调控轴。靶向circ0001679可能是一种有希望的治疗I/ r诱导脑损伤的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhibition of Circ0001679 Alleviates Ischemia/Reperfusion-induced Brain Injury via miR-216/TLR4 Regulatory Axis.

Background: Stroke, primarily known as ischemic stroke, is a leading cause of mortality and disability worldwide. Reperfusion after the ischemia stroke resolves is necessary for maintaining the health of brain tissues; however, it also induces inflammation and oxidative stress, resulting in brain injury. This study aimed to investigate the role of circ0001679 in the pathology of I/R (Ischemia/Reperfusion)-induced brain injury and explore its therapeutic potential for I/R injury.

Methods: The Oxygen-Glucose Deprivation/Re-oxygenation (OGD/R) model was employed in primary mouse astrocytes, and the Middle Cerebral Artery Occlusion (MCAO) model was established in mice to mimic ischemia-reperfusion-induced injury. Si-circ0001679, anti-miR- 216, and TLR4 ORF-clone were transfected either in cells or mice to study the molecular mechanisms during I/R-induced injury. Inflammation and oxidative stress were monitored after treatment.

Results: Upregulated gene expression of circ0001679 was noticed in both OGD/R-treated primary mouse astrocytes and MCAO-induced mouse brain tissue. Silencing circ0001679 reduced cellular damage, inflammation, and oxidative stress induced by OGD/R treatment. Knocking down of circ0001679 alone with either miR-216 inhibition or TLR4 overexpression increased the inflammation response and oxidative stress compared to circ0001679 silencing only. Moreover, inhibition of circ0001679 attenuated brain injury in MCAO-treated mice via reduced infarction, neuronal damage, apoptosis, inflammation, and oxidative stress.

Conclusion: This study unveiled a novel regulatory axis of circ0001679-miR-216-TLR4 in I/Rinduced brain injury. Targeting circ0001679 may represent a promising therapeutic strategy for I/R-induced brain injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信