Nicolas Bondon, Clément Charlot, Lamiaa M. A. Ali, Alexandre Barras, Nicolas Richy, Denis Durand, Yann Molard, Grégory Taupier, Erwan Oliviero, Magali Gary-Bobo, Frédéric Paul, Sabine Szunerits, Nadir Bettache, Jean-Olivier Durand, Christophe Nguyen, Rabah Boukherroub, Olivier Mongin and Clarence Charnay
{"title":"基于fret的介孔有机二氧化硅纳米平台用于体外和体内抗癌双光子光动力治疗。","authors":"Nicolas Bondon, Clément Charlot, Lamiaa M. A. Ali, Alexandre Barras, Nicolas Richy, Denis Durand, Yann Molard, Grégory Taupier, Erwan Oliviero, Magali Gary-Bobo, Frédéric Paul, Sabine Szunerits, Nadir Bettache, Jean-Olivier Durand, Christophe Nguyen, Rabah Boukherroub, Olivier Mongin and Clarence Charnay","doi":"10.1039/D4TB02103G","DOIUrl":null,"url":null,"abstract":"<p >We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol–gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET. Next, the cellular uptake and toxicities of pristine and functionalized NPs were evaluated on breast cancer cell lines upon TPEF and TPE-PDT. Notably, the use of TPE-PDT treatment led to high levels of phototoxicity on MCF-7 and MDA-MB-231 cancer cells with substantial effects when compared to one-photon excitation (OPE)-PDT treatment. Preliminary <em>in vivo</em> data on selective and biodegradable NPs showed a significant phototoxicity towards MDA-MB-231 on zebrafish xenograft embryos, making these advanced nanoplatforms promising candidates for future TPE-PDT-based cancer treatments.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 5","pages":" 1767-1780"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FRET-based mesoporous organosilica nanoplatforms for in vitro and in vivo anticancer two-photon photodynamic therapy†\",\"authors\":\"Nicolas Bondon, Clément Charlot, Lamiaa M. A. Ali, Alexandre Barras, Nicolas Richy, Denis Durand, Yann Molard, Grégory Taupier, Erwan Oliviero, Magali Gary-Bobo, Frédéric Paul, Sabine Szunerits, Nadir Bettache, Jean-Olivier Durand, Christophe Nguyen, Rabah Boukherroub, Olivier Mongin and Clarence Charnay\",\"doi\":\"10.1039/D4TB02103G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol–gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET. Next, the cellular uptake and toxicities of pristine and functionalized NPs were evaluated on breast cancer cell lines upon TPEF and TPE-PDT. Notably, the use of TPE-PDT treatment led to high levels of phototoxicity on MCF-7 and MDA-MB-231 cancer cells with substantial effects when compared to one-photon excitation (OPE)-PDT treatment. Preliminary <em>in vivo</em> data on selective and biodegradable NPs showed a significant phototoxicity towards MDA-MB-231 on zebrafish xenograft embryos, making these advanced nanoplatforms promising candidates for future TPE-PDT-based cancer treatments.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 5\",\"pages\":\" 1767-1780\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02103g\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02103g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
FRET-based mesoporous organosilica nanoplatforms for in vitro and in vivo anticancer two-photon photodynamic therapy†
We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol–gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET. Next, the cellular uptake and toxicities of pristine and functionalized NPs were evaluated on breast cancer cell lines upon TPEF and TPE-PDT. Notably, the use of TPE-PDT treatment led to high levels of phototoxicity on MCF-7 and MDA-MB-231 cancer cells with substantial effects when compared to one-photon excitation (OPE)-PDT treatment. Preliminary in vivo data on selective and biodegradable NPs showed a significant phototoxicity towards MDA-MB-231 on zebrafish xenograft embryos, making these advanced nanoplatforms promising candidates for future TPE-PDT-based cancer treatments.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices