通过协同外推法同时预测多个未测量的肌肉激活。

IF 1.7 4区 医学 Q4 BIOPHYSICS
Shadman Tahmid, James Yang
{"title":"通过协同外推法同时预测多个未测量的肌肉激活。","authors":"Shadman Tahmid, James Yang","doi":"10.1115/1.4067520","DOIUrl":null,"url":null,"abstract":"<p><p>Estimating muscle forces is crucial for understanding joint dynamics and improving rehabilitation strategies, particularly for patients with neurological disorders who suffer from impaired muscle function. Muscle forces are directly proportional to muscle activations, which can be obtained using electromyography (EMG). EMG-driven modeling estimates muscle forces and joint moments from muscle activations. While surface muscles' activations can be obtained using surface electrodes, deep muscles require invasive methods and are not readily available for real-time applications. This study aims to extend our previously developed method for a single unmeasured muscle to a comprehensive approach for the simultaneous prediction of multiple unmeasured muscle activations in the upper extremity using muscle synergy extrapolation and EMG-driven modeling. By employing non-negative matrix factorization to decompose known EMG data into synergy components, the activations of unmeasured muscles are reconstructed with high accuracy by minimizing differences between joint moments obtained by EMG-driven modeling and inverse dynamics. This methodology is validated through experimentally collected muscle activations, demonstrating over 90% correlation with EMG signals in various scenarios.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Prediction of Multiple Unmeasured Muscle Activations Through Synergy Extrapolation.\",\"authors\":\"Shadman Tahmid, James Yang\",\"doi\":\"10.1115/1.4067520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Estimating muscle forces is crucial for understanding joint dynamics and improving rehabilitation strategies, particularly for patients with neurological disorders who suffer from impaired muscle function. Muscle forces are directly proportional to muscle activations, which can be obtained using electromyography (EMG). EMG-driven modeling estimates muscle forces and joint moments from muscle activations. While surface muscles' activations can be obtained using surface electrodes, deep muscles require invasive methods and are not readily available for real-time applications. This study aims to extend our previously developed method for a single unmeasured muscle to a comprehensive approach for the simultaneous prediction of multiple unmeasured muscle activations in the upper extremity using muscle synergy extrapolation and EMG-driven modeling. By employing non-negative matrix factorization to decompose known EMG data into synergy components, the activations of unmeasured muscles are reconstructed with high accuracy by minimizing differences between joint moments obtained by EMG-driven modeling and inverse dynamics. This methodology is validated through experimentally collected muscle activations, demonstrating over 90% correlation with EMG signals in various scenarios.</p>\",\"PeriodicalId\":54871,\"journal\":{\"name\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomechanical Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4067520\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4067520","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

估计肌肉力量对于理解关节动力学和改善康复策略至关重要,特别是对于肌肉功能受损的神经系统疾病患者。肌肉力量与肌肉激活成正比,这可以通过肌电图(EMG)获得。肌电驱动的模型估计肌肉的力量和关节力矩从肌肉激活。而表面肌肉呢?激活可以使用表面电极获得,深层肌肉需要侵入性方法,并且不易用于实时应用。本研究旨在将我们之前开发的单一未测量肌肉的方法扩展为一种综合方法,利用肌肉协同分析和肌电驱动建模,同时预测上肢多个未测量肌肉的激活。通过采用非负矩阵分解将已知肌电数据分解为协同分量,通过最小化肌电驱动建模和逆动力学获得的关节力矩之间的差异,高精度地重建未测量肌肉的激活。该方法通过实验收集的肌肉激活数据得到验证,在各种情况下与肌电信号的相关性超过90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simultaneous Prediction of Multiple Unmeasured Muscle Activations Through Synergy Extrapolation.

Estimating muscle forces is crucial for understanding joint dynamics and improving rehabilitation strategies, particularly for patients with neurological disorders who suffer from impaired muscle function. Muscle forces are directly proportional to muscle activations, which can be obtained using electromyography (EMG). EMG-driven modeling estimates muscle forces and joint moments from muscle activations. While surface muscles' activations can be obtained using surface electrodes, deep muscles require invasive methods and are not readily available for real-time applications. This study aims to extend our previously developed method for a single unmeasured muscle to a comprehensive approach for the simultaneous prediction of multiple unmeasured muscle activations in the upper extremity using muscle synergy extrapolation and EMG-driven modeling. By employing non-negative matrix factorization to decompose known EMG data into synergy components, the activations of unmeasured muscles are reconstructed with high accuracy by minimizing differences between joint moments obtained by EMG-driven modeling and inverse dynamics. This methodology is validated through experimentally collected muscle activations, demonstrating over 90% correlation with EMG signals in various scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信