{"title":"有限种群的生态进化动力学和噪声诱导的选择逆转。","authors":"Ananda Shikhara Bhat, Vishwesha Guttal","doi":"10.1086/733196","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractTheoretical studies from diverse areas of population biology have shown that demographic stochasticity can substantially impact evolutionary dynamics in finite populations, including scenarios where traits that are disfavored by natural selection can nevertheless increase in frequency through the course of evolution. Here, we analytically describe the eco-evolutionary dynamics of finite populations from demographic first principles. We investigate how noise-induced effects can alter the evolutionary fate of populations in which total population size may vary stochastically over time. Starting from a generic birth-death process, we derive a set of stochastic differential equations (SDEs) that describe the eco-evolutionary dynamics of a finite population of individuals bearing discrete traits. Our equations recover well-known descriptions of evolutionary dynamics, such as the replicator-mutator equation, the Price equation, and Fisher's fundamental theorem in the infinite population limit. For finite populations, our SDEs reveal how stochasticity can predictably bias evolutionary trajectories to favor certain traits, a phenomenon we call \"noise-induced biasing.\" We show that noise-induced biasing acts through two distinct mechanisms, which we call the \"direct\" and \"indirect\" mechanisms. While the direct mechanism can be identified with classic bet-hedging theory, the indirect mechanism is a more subtle consequence of frequency- and density-dependent demographic stochasticity. Our equations reveal that noise-induced biasing may lead to evolution proceeding in a direction opposite to that predicted by natural selection in the infinite population limit. By extending and generalizing some standard equations of population genetics, we thus describe how demographic stochasticity appears alongside, and interacts with, the more well-understood forces of natural selection and neutral drift to determine the eco-evolutionary dynamics of finite populations of nonconstant size.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"205 1","pages":"1-19"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-Evolutionary Dynamics for Finite Populations and the Noise-Induced Reversal of Selection.\",\"authors\":\"Ananda Shikhara Bhat, Vishwesha Guttal\",\"doi\":\"10.1086/733196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractTheoretical studies from diverse areas of population biology have shown that demographic stochasticity can substantially impact evolutionary dynamics in finite populations, including scenarios where traits that are disfavored by natural selection can nevertheless increase in frequency through the course of evolution. Here, we analytically describe the eco-evolutionary dynamics of finite populations from demographic first principles. We investigate how noise-induced effects can alter the evolutionary fate of populations in which total population size may vary stochastically over time. Starting from a generic birth-death process, we derive a set of stochastic differential equations (SDEs) that describe the eco-evolutionary dynamics of a finite population of individuals bearing discrete traits. Our equations recover well-known descriptions of evolutionary dynamics, such as the replicator-mutator equation, the Price equation, and Fisher's fundamental theorem in the infinite population limit. For finite populations, our SDEs reveal how stochasticity can predictably bias evolutionary trajectories to favor certain traits, a phenomenon we call \\\"noise-induced biasing.\\\" We show that noise-induced biasing acts through two distinct mechanisms, which we call the \\\"direct\\\" and \\\"indirect\\\" mechanisms. While the direct mechanism can be identified with classic bet-hedging theory, the indirect mechanism is a more subtle consequence of frequency- and density-dependent demographic stochasticity. Our equations reveal that noise-induced biasing may lead to evolution proceeding in a direction opposite to that predicted by natural selection in the infinite population limit. By extending and generalizing some standard equations of population genetics, we thus describe how demographic stochasticity appears alongside, and interacts with, the more well-understood forces of natural selection and neutral drift to determine the eco-evolutionary dynamics of finite populations of nonconstant size.</p>\",\"PeriodicalId\":50800,\"journal\":{\"name\":\"American Naturalist\",\"volume\":\"205 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Naturalist\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1086/733196\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/733196","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Eco-Evolutionary Dynamics for Finite Populations and the Noise-Induced Reversal of Selection.
AbstractTheoretical studies from diverse areas of population biology have shown that demographic stochasticity can substantially impact evolutionary dynamics in finite populations, including scenarios where traits that are disfavored by natural selection can nevertheless increase in frequency through the course of evolution. Here, we analytically describe the eco-evolutionary dynamics of finite populations from demographic first principles. We investigate how noise-induced effects can alter the evolutionary fate of populations in which total population size may vary stochastically over time. Starting from a generic birth-death process, we derive a set of stochastic differential equations (SDEs) that describe the eco-evolutionary dynamics of a finite population of individuals bearing discrete traits. Our equations recover well-known descriptions of evolutionary dynamics, such as the replicator-mutator equation, the Price equation, and Fisher's fundamental theorem in the infinite population limit. For finite populations, our SDEs reveal how stochasticity can predictably bias evolutionary trajectories to favor certain traits, a phenomenon we call "noise-induced biasing." We show that noise-induced biasing acts through two distinct mechanisms, which we call the "direct" and "indirect" mechanisms. While the direct mechanism can be identified with classic bet-hedging theory, the indirect mechanism is a more subtle consequence of frequency- and density-dependent demographic stochasticity. Our equations reveal that noise-induced biasing may lead to evolution proceeding in a direction opposite to that predicted by natural selection in the infinite population limit. By extending and generalizing some standard equations of population genetics, we thus describe how demographic stochasticity appears alongside, and interacts with, the more well-understood forces of natural selection and neutral drift to determine the eco-evolutionary dynamics of finite populations of nonconstant size.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.