chatgpt - 40在日本医疗执照考试中的表现:纯文本和基于图像问题的准确性评估。

IF 3.2 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Yuki Miyazaki, Masahiro Hata, Hisaki Omori, Atsuya Hirashima, Yuta Nakagawa, Mitsuhiro Eto, Shun Takahashi, Manabu Ikeda
{"title":"chatgpt - 40在日本医疗执照考试中的表现:纯文本和基于图像问题的准确性评估。","authors":"Yuki Miyazaki, Masahiro Hata, Hisaki Omori, Atsuya Hirashima, Yuta Nakagawa, Mitsuhiro Eto, Shun Takahashi, Manabu Ikeda","doi":"10.2196/63129","DOIUrl":null,"url":null,"abstract":"<p><strong>Unlabelled: </strong>This study evaluated the performance of ChatGPT with GPT-4 Omni (GPT-4o) on the 118th Japanese Medical Licensing Examination. The study focused on both text-only and image-based questions. The model demonstrated a high level of accuracy overall, with no significant difference in performance between text-only and image-based questions. Common errors included clinical judgment mistakes and prioritization issues, underscoring the need for further improvement in the integration of artificial intelligence into medical education and practice.</p>","PeriodicalId":36236,"journal":{"name":"JMIR Medical Education","volume":"10 ","pages":"e63129"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687171/pdf/","citationCount":"0","resultStr":"{\"title\":\"Performance of ChatGPT-4o on the Japanese Medical Licensing Examination: Evalution of Accuracy in Text-Only and Image-Based Questions.\",\"authors\":\"Yuki Miyazaki, Masahiro Hata, Hisaki Omori, Atsuya Hirashima, Yuta Nakagawa, Mitsuhiro Eto, Shun Takahashi, Manabu Ikeda\",\"doi\":\"10.2196/63129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Unlabelled: </strong>This study evaluated the performance of ChatGPT with GPT-4 Omni (GPT-4o) on the 118th Japanese Medical Licensing Examination. The study focused on both text-only and image-based questions. The model demonstrated a high level of accuracy overall, with no significant difference in performance between text-only and image-based questions. Common errors included clinical judgment mistakes and prioritization issues, underscoring the need for further improvement in the integration of artificial intelligence into medical education and practice.</p>\",\"PeriodicalId\":36236,\"journal\":{\"name\":\"JMIR Medical Education\",\"volume\":\"10 \",\"pages\":\"e63129\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11687171/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/63129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/63129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

未标记:本研究评估了ChatGPT与GPT-4 Omni (gpt - 40)在第118届日本医疗执照考试中的表现。这项研究主要集中在纯文本和基于图像的问题上。该模型总体上显示出很高的准确性,纯文本和基于图像的问题在性能上没有显著差异。常见的错误包括临床判断错误和优先顺序问题,强调需要进一步改进将人工智能融入医学教育和实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of ChatGPT-4o on the Japanese Medical Licensing Examination: Evalution of Accuracy in Text-Only and Image-Based Questions.

Unlabelled: This study evaluated the performance of ChatGPT with GPT-4 Omni (GPT-4o) on the 118th Japanese Medical Licensing Examination. The study focused on both text-only and image-based questions. The model demonstrated a high level of accuracy overall, with no significant difference in performance between text-only and image-based questions. Common errors included clinical judgment mistakes and prioritization issues, underscoring the need for further improvement in the integration of artificial intelligence into medical education and practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JMIR Medical Education
JMIR Medical Education Social Sciences-Education
CiteScore
6.90
自引率
5.60%
发文量
54
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信