Abdalla A Mousa, Fatma A Mohamed, Saadia A Abd El-Megied, Yehya A Youssef
{"title":"合成纤维基羊毛混纺织物在超临界二氧化碳中的染色。","authors":"Abdalla A Mousa, Fatma A Mohamed, Saadia A Abd El-Megied, Yehya A Youssef","doi":"10.1038/s41598-024-81417-8","DOIUrl":null,"url":null,"abstract":"<p><p>Development of supercritical carbon dioxide (SC-CO<sub>2</sub>) dyeing technology for natural fabrics and their blended fabrics is essential for the textile industry due to environmental and economic considerations. Wool (W), polyester (PET) and nylon (N) fabrics and their wool/polyester (W/PET) and wool/nylon (W/N) blended fabrics were dyed in SC-CO<sub>2</sub> medium with a synthesized reactive disperse dye containing a vinylsulphone (VS) reactive group, which behaves as a disperse dye for synthetic fibers and a reactive dye for protein fibers. The SC-CO<sub>2</sub> dyeing performance of all fabrics was investigated in terms of color strength, fixation, colorimetric and fastness measurements and compared with the conventional aqueous dyeing method. The results obtained indicate that the VS reactive disperse dye structure and non-polar PET component mainly improved colour strength (K/S) values of the dyed PET fabric and W/PET blended fabrics in SC-CO<sub>2</sub> compared with those in the aqueous medium. Also, SC-CO<sub>2</sub> dyeing has a notable influence on a*, b* and C* values of the dyed PET, N and W/PET fabrics and showed that the uptake of the VS reactive disperse dye and their appearance colors are higher and more saturated than the aqueous dyed samples. The levelling and fastness properties of all dyed fabrics in SC-CO<sub>2</sub> medium are similar to those obtained in the aqueous medium. It was observed that VS reactive disperse dye penetrates well into the PET fabric and is chemically bound with the W fabric using both SC-CO<sub>2</sub> and aqueous media and did not display significant color difference (∆E) values of W, PET and W/PET fabrics even after 20 washing cycles. The study claims that the VS reactive disperse dye structure and dyed PET-based wool blended fabric are good candidates for industrially SC-CO<sub>2</sub> dyeing technology.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30604"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666590/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dyeing of synthetic fiber-based wool blended fabrics in supercritical carbon dioxide.\",\"authors\":\"Abdalla A Mousa, Fatma A Mohamed, Saadia A Abd El-Megied, Yehya A Youssef\",\"doi\":\"10.1038/s41598-024-81417-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Development of supercritical carbon dioxide (SC-CO<sub>2</sub>) dyeing technology for natural fabrics and their blended fabrics is essential for the textile industry due to environmental and economic considerations. Wool (W), polyester (PET) and nylon (N) fabrics and their wool/polyester (W/PET) and wool/nylon (W/N) blended fabrics were dyed in SC-CO<sub>2</sub> medium with a synthesized reactive disperse dye containing a vinylsulphone (VS) reactive group, which behaves as a disperse dye for synthetic fibers and a reactive dye for protein fibers. The SC-CO<sub>2</sub> dyeing performance of all fabrics was investigated in terms of color strength, fixation, colorimetric and fastness measurements and compared with the conventional aqueous dyeing method. The results obtained indicate that the VS reactive disperse dye structure and non-polar PET component mainly improved colour strength (K/S) values of the dyed PET fabric and W/PET blended fabrics in SC-CO<sub>2</sub> compared with those in the aqueous medium. Also, SC-CO<sub>2</sub> dyeing has a notable influence on a*, b* and C* values of the dyed PET, N and W/PET fabrics and showed that the uptake of the VS reactive disperse dye and their appearance colors are higher and more saturated than the aqueous dyed samples. The levelling and fastness properties of all dyed fabrics in SC-CO<sub>2</sub> medium are similar to those obtained in the aqueous medium. It was observed that VS reactive disperse dye penetrates well into the PET fabric and is chemically bound with the W fabric using both SC-CO<sub>2</sub> and aqueous media and did not display significant color difference (∆E) values of W, PET and W/PET fabrics even after 20 washing cycles. The study claims that the VS reactive disperse dye structure and dyed PET-based wool blended fabric are good candidates for industrially SC-CO<sub>2</sub> dyeing technology.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"14 1\",\"pages\":\"30604\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666590/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-81417-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-81417-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Dyeing of synthetic fiber-based wool blended fabrics in supercritical carbon dioxide.
Development of supercritical carbon dioxide (SC-CO2) dyeing technology for natural fabrics and their blended fabrics is essential for the textile industry due to environmental and economic considerations. Wool (W), polyester (PET) and nylon (N) fabrics and their wool/polyester (W/PET) and wool/nylon (W/N) blended fabrics were dyed in SC-CO2 medium with a synthesized reactive disperse dye containing a vinylsulphone (VS) reactive group, which behaves as a disperse dye for synthetic fibers and a reactive dye for protein fibers. The SC-CO2 dyeing performance of all fabrics was investigated in terms of color strength, fixation, colorimetric and fastness measurements and compared with the conventional aqueous dyeing method. The results obtained indicate that the VS reactive disperse dye structure and non-polar PET component mainly improved colour strength (K/S) values of the dyed PET fabric and W/PET blended fabrics in SC-CO2 compared with those in the aqueous medium. Also, SC-CO2 dyeing has a notable influence on a*, b* and C* values of the dyed PET, N and W/PET fabrics and showed that the uptake of the VS reactive disperse dye and their appearance colors are higher and more saturated than the aqueous dyed samples. The levelling and fastness properties of all dyed fabrics in SC-CO2 medium are similar to those obtained in the aqueous medium. It was observed that VS reactive disperse dye penetrates well into the PET fabric and is chemically bound with the W fabric using both SC-CO2 and aqueous media and did not display significant color difference (∆E) values of W, PET and W/PET fabrics even after 20 washing cycles. The study claims that the VS reactive disperse dye structure and dyed PET-based wool blended fabric are good candidates for industrially SC-CO2 dyeing technology.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.