棕榈上的散叶蝇——散叶蝇属种界划分的综合分类学方法,并附pygmaeae sp. nov的描述。

IF 14.1 1区 生物学 Q1 MYCOLOGY
Studies in Mycology Pub Date : 2024-12-01 Epub Date: 2024-10-23 DOI:10.3114/sim.2024.109.08
D S Pereira, A J L Phillips
{"title":"棕榈上的散叶蝇——散叶蝇属种界划分的综合分类学方法,并附pygmaeae sp. nov的描述。","authors":"D S Pereira, A J L Phillips","doi":"10.3114/sim.2024.109.08","DOIUrl":null,"url":null,"abstract":"<p><p>The application of traditional morphological and ecological species concepts to closely related, asexual fungal taxa is challenging due to the lack of distinctive morphological characters and frequent cosmopolitan and plurivorous behaviour. As a result, multilocus sequence analysis (MLSA) has become a powerful and widely used tool to recognise and delimit independent evolutionary lineages (IEL) in fungi. However, MLSA can mask discordances in individual gene trees and lead to misinterpretation of speciation events. This phenomenon has been extensively documented in <i>Diaporthe</i>, and species identifications in this genus remains an ongoing challenge. However, the accurate delimitation of <i>Diaporthe</i> species is critical as the genus encompasses several cosmopolitan pathogens that cause serious diseases on many economically important plant hosts. In this regard, following a survey of palm leaf spotting fungi in Lisbon, Portugal, <i>Diaporthe</i> species occurring on <i>Arecaceae</i> hosts were used as a case study to implement an integrative taxonomic approach for a reliable species identification in the genus. Molecular analyses based on the genealogical concordance phylogenetic species recognition (GCPSR) and DNA-based species delimitation methods revealed that speciation events in the genus have been highly overestimated. Most IEL identified by the GCPSR were also recognised by Poisson tree processes (PTP) coalescent-based methods, which indicated that phylogenetic lineages in <i>Diaporthe</i> are likely influenced by incomplete lineage sorting (ILS) and reticulation events. Furthermore, the recognition of genetic recombination signals and the evaluation of genetic variability based on sequence polymorphisms reinforced these hypotheses. New clues towards the intraspecific variation in the common loci used for phylogenetic inference of <i>Diaporthe</i> species are discussed. These results demonstrate that intraspecific variability has often been used as an indicator to introduce new species in <i>Diaporthe</i>, which has led to a proliferation of species names in the genus. Based on these data, 53 species are reduced to synonymy with 18 existing <i>Diaporthe</i> species, and a new species, <i>D. pygmaeae</i>, is introduced. Thirteen new plant host-fungus associations are reported, all of which represent new host family records for <i>Arecaceae</i>. This study has recognised and resolved a total of 14 valid <i>Diaporthe</i> species associated with <i>Arecaceae</i> hosts worldwide, some of which are associated with disease symptoms. This illustrates the need for more systematic research to examine the complex of <i>Diaporthe</i> taxa associated with palms and determine their potential pathogenicity. By implementing a more rational framework for future studies on species delimitation in <i>Diaporthe</i>, this study provides a solid foundation to stabilise the taxonomy of species in the genus. Guidelines for species recognition, definition and identification in <i>Diaporthe</i> are included. <b>Taxonomic novelties: New species:</b> <i>Diaporthe pygmaeae</i> D.S. Pereira & A.J.L. Phillips. <b>New synonyms:</b> <i>Diaporthe afzeliae</i> Monkai & Lumyong, <i>Diaporthe alangii</i> C.M. Tian & Q. Yang, <i>Diaporthe araliae-chinensis</i> S.Y. Wang <i>et al</i>., <i>Diaporthe australiana</i> R.G. Shivas <i>et al</i>., <i>Diaporthe australpacifica</i> Y.P. Tan & R.G. Shivas, <i>Diaporthe bombacis</i> Monkai & Lumyong, <i>Diaporthe caryae</i> C.M. Tian & Q. Yang, <i>Diaporthe chimonanthi</i> (C.Q. Chang <i>et al</i>.) Y.H. Gao & L. Cai, <i>Diaporthe conferta</i> H. Dong <i>et al</i>., <i>Diaporthe diospyrina</i> Y.K. Bai & X.L. Fan, <i>Diaporthe durionigena</i> L.D. Thao <i>et al</i>., <i>Diaporthe etinsideae</i> Y.P. Tan & R.G. Shivas, <i>Diaporthe eucalyptorum</i> Crous & R.G. Shivas, <i>Diaporthe fujianensis</i> Jayaward. <i>et al</i>., <i>Diaporthe fusiformis</i> Jayaward. <i>et al</i>., <i>Diaporthe globoostiolata</i> Monkai & Lumyong, <i>Diaporthe hainanensis</i> Qin Yang, <i>Diaporthe hongkongensis</i> R.R. Gomes <i>et al</i>., <i>Diaporthe hubeiensis</i> Dissan. <i>et al</i>., <i>Diaporthe infecunda</i> R.R. Gomes <i>et al</i>., <i>Diaporthe italiana</i> Chethana <i>et al</i>., <i>Diaporthe juglandigena</i> S.Y. Wang <i>et al</i>., <i>Diaporthe lagerstroemiae</i> (C.Q. Chang <i>et al</i>.) Y.H. Gao & L. Cai, <i>Diaporthe lithocarpi</i> (Y.H. Gao <i>et al</i>.) Y.H. Gao & L. Cai, <i>Diaporthe lutescens</i> S.T. Huang <i>et al</i>., <i>Diaporthe machili</i> S.T. Huang <i>et al</i>., <i>Diaporthe megabiguttulata</i> M. Luo <i>et al</i>., <i>Diaporthe middletonii</i> R.G. Shivas <i>et al</i>., <i>Diaporthe morindae</i> M. Luo <i>et al</i>., <i>Diaporthe nannuoshanensis</i> S.T. Huang <i>et al</i>., <i>Diaporthe nigra</i> Brahman. & K.D. Hyde, <i>Diaporthe orixae</i> Q.T. Lu & Zhen Zhang, <i>Diaporthe passifloricola</i> Crous & M.J. Wingf., <i>Diaporthe pimpinellae</i> Abeywickrama <i>et al</i>., <i>Diaporthe pseudoinconspicua</i> T.G.L Oliveira <i>et al</i>., <i>Diaporthe pungensis</i> S.T. Huang <i>et al</i>., <i>Diaporthe rhodomyrti</i> C.M. Tian & Qin Yang, <i>Diaporthe rosae</i> M.C. Samar. & K.D. Hyde, <i>Diaporthe rumicicola</i> Manawas <i>et al</i>., <i>Diaporthe salicicola</i> R.G. Shivas <i>et al</i>., <i>Diaporthe samaneae</i> Monkai & Lumyong, <i>Diaporthe subcylindrospora</i> S.K. Huang <i>et al</i>., <i>Diaporthe tectonae</i> Doilom <i>et al</i>., <i>Diaporthe tectonigena</i> Doilom <i>et al</i>., <i>Diaporthe theobromatis</i> H. Dong <i>et al</i>., <i>Diaporthe thunbergiicola</i> Udayanga & K.D. Hyde, <i>Diaporthe tuyouyouiae</i> Y.P. Tan <i>et al</i>., <i>Diaporthe unshiuensis</i> F. Huang <i>et al</i>., <i>Diaporthe vochysiae</i> S.A. Noriler <i>et al</i>., <i>Diaporthe xishuangbannaensis</i> Hongsanan & K.D. Hyde, <i>Diaporthe xylocarpi</i> M.S. Calabon & E.B.G. Jones, <i>Diaporthe zaobaisu</i> Y.S. Guo & G.P. Wang, <i>Diaporthe zhaoqingensis</i> M. Luo <i>et al</i>. <b>Citation:</b> Pereira DS, Phillips AJL (2024). <i>Diaporthe</i> species on palms - integrative taxonomic approach for species boundaries delimitation in the genus <i>Diaporthe</i>, with the description of <i>D</i>. <i>pygmaeae sp</i>. <i>nov</i>. <i>Studies in Mycology</i> <b>109</b>: 487-594. doi: 10.3114/sim.2024.109.08.</p>","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"109 ","pages":"487-594"},"PeriodicalIF":14.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663421/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Diaporthe</i> species on palms - integrative taxonomic approach for species boundaries delimitation in the genus <i>Diaporthe</i>, with the description of <i>D. pygmaeae sp. nov</i>.\",\"authors\":\"D S Pereira, A J L Phillips\",\"doi\":\"10.3114/sim.2024.109.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The application of traditional morphological and ecological species concepts to closely related, asexual fungal taxa is challenging due to the lack of distinctive morphological characters and frequent cosmopolitan and plurivorous behaviour. As a result, multilocus sequence analysis (MLSA) has become a powerful and widely used tool to recognise and delimit independent evolutionary lineages (IEL) in fungi. However, MLSA can mask discordances in individual gene trees and lead to misinterpretation of speciation events. This phenomenon has been extensively documented in <i>Diaporthe</i>, and species identifications in this genus remains an ongoing challenge. However, the accurate delimitation of <i>Diaporthe</i> species is critical as the genus encompasses several cosmopolitan pathogens that cause serious diseases on many economically important plant hosts. In this regard, following a survey of palm leaf spotting fungi in Lisbon, Portugal, <i>Diaporthe</i> species occurring on <i>Arecaceae</i> hosts were used as a case study to implement an integrative taxonomic approach for a reliable species identification in the genus. Molecular analyses based on the genealogical concordance phylogenetic species recognition (GCPSR) and DNA-based species delimitation methods revealed that speciation events in the genus have been highly overestimated. Most IEL identified by the GCPSR were also recognised by Poisson tree processes (PTP) coalescent-based methods, which indicated that phylogenetic lineages in <i>Diaporthe</i> are likely influenced by incomplete lineage sorting (ILS) and reticulation events. Furthermore, the recognition of genetic recombination signals and the evaluation of genetic variability based on sequence polymorphisms reinforced these hypotheses. New clues towards the intraspecific variation in the common loci used for phylogenetic inference of <i>Diaporthe</i> species are discussed. These results demonstrate that intraspecific variability has often been used as an indicator to introduce new species in <i>Diaporthe</i>, which has led to a proliferation of species names in the genus. Based on these data, 53 species are reduced to synonymy with 18 existing <i>Diaporthe</i> species, and a new species, <i>D. pygmaeae</i>, is introduced. Thirteen new plant host-fungus associations are reported, all of which represent new host family records for <i>Arecaceae</i>. This study has recognised and resolved a total of 14 valid <i>Diaporthe</i> species associated with <i>Arecaceae</i> hosts worldwide, some of which are associated with disease symptoms. This illustrates the need for more systematic research to examine the complex of <i>Diaporthe</i> taxa associated with palms and determine their potential pathogenicity. By implementing a more rational framework for future studies on species delimitation in <i>Diaporthe</i>, this study provides a solid foundation to stabilise the taxonomy of species in the genus. Guidelines for species recognition, definition and identification in <i>Diaporthe</i> are included. <b>Taxonomic novelties: New species:</b> <i>Diaporthe pygmaeae</i> D.S. Pereira & A.J.L. Phillips. <b>New synonyms:</b> <i>Diaporthe afzeliae</i> Monkai & Lumyong, <i>Diaporthe alangii</i> C.M. Tian & Q. Yang, <i>Diaporthe araliae-chinensis</i> S.Y. Wang <i>et al</i>., <i>Diaporthe australiana</i> R.G. Shivas <i>et al</i>., <i>Diaporthe australpacifica</i> Y.P. Tan & R.G. Shivas, <i>Diaporthe bombacis</i> Monkai & Lumyong, <i>Diaporthe caryae</i> C.M. Tian & Q. Yang, <i>Diaporthe chimonanthi</i> (C.Q. Chang <i>et al</i>.) Y.H. Gao & L. Cai, <i>Diaporthe conferta</i> H. Dong <i>et al</i>., <i>Diaporthe diospyrina</i> Y.K. Bai & X.L. Fan, <i>Diaporthe durionigena</i> L.D. Thao <i>et al</i>., <i>Diaporthe etinsideae</i> Y.P. Tan & R.G. Shivas, <i>Diaporthe eucalyptorum</i> Crous & R.G. Shivas, <i>Diaporthe fujianensis</i> Jayaward. <i>et al</i>., <i>Diaporthe fusiformis</i> Jayaward. <i>et al</i>., <i>Diaporthe globoostiolata</i> Monkai & Lumyong, <i>Diaporthe hainanensis</i> Qin Yang, <i>Diaporthe hongkongensis</i> R.R. Gomes <i>et al</i>., <i>Diaporthe hubeiensis</i> Dissan. <i>et al</i>., <i>Diaporthe infecunda</i> R.R. Gomes <i>et al</i>., <i>Diaporthe italiana</i> Chethana <i>et al</i>., <i>Diaporthe juglandigena</i> S.Y. Wang <i>et al</i>., <i>Diaporthe lagerstroemiae</i> (C.Q. Chang <i>et al</i>.) Y.H. Gao & L. Cai, <i>Diaporthe lithocarpi</i> (Y.H. Gao <i>et al</i>.) Y.H. Gao & L. Cai, <i>Diaporthe lutescens</i> S.T. Huang <i>et al</i>., <i>Diaporthe machili</i> S.T. Huang <i>et al</i>., <i>Diaporthe megabiguttulata</i> M. Luo <i>et al</i>., <i>Diaporthe middletonii</i> R.G. Shivas <i>et al</i>., <i>Diaporthe morindae</i> M. Luo <i>et al</i>., <i>Diaporthe nannuoshanensis</i> S.T. Huang <i>et al</i>., <i>Diaporthe nigra</i> Brahman. & K.D. Hyde, <i>Diaporthe orixae</i> Q.T. Lu & Zhen Zhang, <i>Diaporthe passifloricola</i> Crous & M.J. Wingf., <i>Diaporthe pimpinellae</i> Abeywickrama <i>et al</i>., <i>Diaporthe pseudoinconspicua</i> T.G.L Oliveira <i>et al</i>., <i>Diaporthe pungensis</i> S.T. Huang <i>et al</i>., <i>Diaporthe rhodomyrti</i> C.M. Tian & Qin Yang, <i>Diaporthe rosae</i> M.C. Samar. & K.D. Hyde, <i>Diaporthe rumicicola</i> Manawas <i>et al</i>., <i>Diaporthe salicicola</i> R.G. Shivas <i>et al</i>., <i>Diaporthe samaneae</i> Monkai & Lumyong, <i>Diaporthe subcylindrospora</i> S.K. Huang <i>et al</i>., <i>Diaporthe tectonae</i> Doilom <i>et al</i>., <i>Diaporthe tectonigena</i> Doilom <i>et al</i>., <i>Diaporthe theobromatis</i> H. Dong <i>et al</i>., <i>Diaporthe thunbergiicola</i> Udayanga & K.D. Hyde, <i>Diaporthe tuyouyouiae</i> Y.P. Tan <i>et al</i>., <i>Diaporthe unshiuensis</i> F. Huang <i>et al</i>., <i>Diaporthe vochysiae</i> S.A. Noriler <i>et al</i>., <i>Diaporthe xishuangbannaensis</i> Hongsanan & K.D. Hyde, <i>Diaporthe xylocarpi</i> M.S. Calabon & E.B.G. Jones, <i>Diaporthe zaobaisu</i> Y.S. Guo & G.P. Wang, <i>Diaporthe zhaoqingensis</i> M. Luo <i>et al</i>. <b>Citation:</b> Pereira DS, Phillips AJL (2024). <i>Diaporthe</i> species on palms - integrative taxonomic approach for species boundaries delimitation in the genus <i>Diaporthe</i>, with the description of <i>D</i>. <i>pygmaeae sp</i>. <i>nov</i>. <i>Studies in Mycology</i> <b>109</b>: 487-594. doi: 10.3114/sim.2024.109.08.</p>\",\"PeriodicalId\":22036,\"journal\":{\"name\":\"Studies in Mycology\",\"volume\":\"109 \",\"pages\":\"487-594\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Mycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3114/sim.2024.109.08\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Mycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3114/sim.2024.109.08","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏独特的形态特征和频繁的世界性和多食性行为,将传统的形态学和生态学物种概念应用于密切相关的无性真菌分类群是具有挑战性的。因此,多位点序列分析(MLSA)已成为识别和划分真菌独立进化谱系(IEL)的有力工具。然而,MLSA可以掩盖个体基因树的不一致,导致物种形成事件的误解。这种现象在Diaporthe中已被广泛记录,该属的物种鉴定仍然是一个持续的挑战。然而,准确的物种划分是至关重要的,因为该属包含几种世界性的病原体,这些病原体会对许多重要的经济植物宿主造成严重的疾病。在对葡萄牙里斯本棕榈叶斑真菌进行调查后,以发生在槟榔科宿主上的Diaporthe为例,采用综合分类方法对该属进行可靠的物种鉴定。基于家谱一致性、系统发育物种识别(GCPSR)和基于dna的物种划分方法的分子分析表明,该属的物种形成事件被高估了。GCPSR识别的大多数IEL也被泊松树过程(PTP)聚结方法识别,这表明Diaporthe的系统发育谱系可能受到不完全谱系分类(ILS)和网状事件的影响。此外,基因重组信号的识别和基于序列多态性的遗传变异评估也加强了这些假设。讨论了用于物种系统发育推断的常见位点种内变异的新线索。这些结果表明,种内变异性经常被用来作为引入新种的一个指标,这导致了属中物种名称的增殖。在此基础上,将53种与现有的18种Diaporthe归为同义种,并引入了一个新种pygmaeae。报道了13个新的植物寄主-真菌关联,它们都代表了槟榔科寄主家族的新记录。本研究共发现并鉴定了14种与槟榔科寄主相关的有效散斑菌,其中一些与疾病症状有关。这说明需要更系统的研究来检查与棕榈树相关的Diaporthe类群的复合体,并确定其潜在的致病性。本研究为今后Diaporthe属的物种划分研究提供了更为合理的框架,为稳定该属的物种分类奠定了坚实的基础。包括物种识别、定义和鉴定指南。分类新异:新种:pygmaeae Diaporthe Pereira & A.J.L. Phillips。新的同义词:黄斑蝶孟凯和卢明,黄斑蝶田传明和杨庆林,黄斑蝶中国种王素英等,黄斑蝶澳大利亚种R.G. Shivas等,黄斑蝶澳大利亚种谭彦平和R.G. Shivas,黄斑蝶澳大利亚种孟凯和卢明,黄斑蝶中国种田传明和杨庆,黄斑蝶中国种高永华和蔡玲,黄斑蝶中国种董洪辉等,黄斑蝶白永宽和范晓亮等,黄斑蝶中国种陶立德等,黄杨,黄杨,黄杨,黄杨,黄杨,黄杨,黄杨,黄杨,黄杨。Diaporthe fusiformis Jayaward等。王晓明等,全球传代传代孟凯和卢勇,海南传代传代秦阳,香港传代传代R.R. Gomes等,湖北传代传代Dissan。et al ., Diaporthe infecunda水银血压计戈麦斯et al ., Diaporthe italiana Chethana et al ., Diaporthe juglandigena林亭汝王et al ., Diaporthe lagerstroemiae常et al .(中国区)Y.H.高& l . Cai Diaporthe lithocarpi (Y.H.高et al。)Y.H.高& l . Cai Diaporthe lutescens s.t。黄et al ., Diaporthe machili s.t。黄et al ., Diaporthe megabiguttulata罗m . et al ., Diaporthe middletonii R.G.湿婆et al ., Diaporthe morindae罗m . et al ., Diaporthe nannuoshanensis s.t。黄et al .,黑鬼婆罗门。&海德K.D.,卢庆涛&张震,克劳斯&翁明杰。, Diaporthe pimpinellae Abeywickrama等,Diaporthe pseudoinoliveira等,Diaporthe pungensis s.t.t. Huang等,Diaporthe rhodomyrti Tian C.M. & Yang Qin, Diaporthe rosae M.C. Samar。diapthe rumicicola Manawas等,diapthe salicola R.G. Shivas等,diapthe samaneae Monkai & Lumyong, diapthe sub圆柱孢子a S.K. Huang等,diapthe tectonae Doilom等,diapthe theobromatis h Dong等,diapthe thunbergiicola Udayanga & K.D. Hyde, diapthe tuyouyouiae Y.P. Tan等,Diaporthe unshiuensis F. Huang等,Diaporthe vochysiae S.A. Noriler等,Diaporthe西双版纳ensis Hongsanan & K.D. Hyde, Diaporthe xylocarpi M.S. Calabon & E.B.G. Jones, Diaporthe zabaisu yyss & Wang G.P., Diaporthe肇庆ensis M. Luo等。引用本文:Pereira DS, Phillips AJL(2024)。棕榈上的散斑蝶属物种划分的综合分类学方法,附pygmaeae sp. . [j] .真菌学研究,109:487-594。doi: 10.3114 / sim.2024.109.08。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diaporthe species on palms - integrative taxonomic approach for species boundaries delimitation in the genus Diaporthe, with the description of D. pygmaeae sp. nov.

The application of traditional morphological and ecological species concepts to closely related, asexual fungal taxa is challenging due to the lack of distinctive morphological characters and frequent cosmopolitan and plurivorous behaviour. As a result, multilocus sequence analysis (MLSA) has become a powerful and widely used tool to recognise and delimit independent evolutionary lineages (IEL) in fungi. However, MLSA can mask discordances in individual gene trees and lead to misinterpretation of speciation events. This phenomenon has been extensively documented in Diaporthe, and species identifications in this genus remains an ongoing challenge. However, the accurate delimitation of Diaporthe species is critical as the genus encompasses several cosmopolitan pathogens that cause serious diseases on many economically important plant hosts. In this regard, following a survey of palm leaf spotting fungi in Lisbon, Portugal, Diaporthe species occurring on Arecaceae hosts were used as a case study to implement an integrative taxonomic approach for a reliable species identification in the genus. Molecular analyses based on the genealogical concordance phylogenetic species recognition (GCPSR) and DNA-based species delimitation methods revealed that speciation events in the genus have been highly overestimated. Most IEL identified by the GCPSR were also recognised by Poisson tree processes (PTP) coalescent-based methods, which indicated that phylogenetic lineages in Diaporthe are likely influenced by incomplete lineage sorting (ILS) and reticulation events. Furthermore, the recognition of genetic recombination signals and the evaluation of genetic variability based on sequence polymorphisms reinforced these hypotheses. New clues towards the intraspecific variation in the common loci used for phylogenetic inference of Diaporthe species are discussed. These results demonstrate that intraspecific variability has often been used as an indicator to introduce new species in Diaporthe, which has led to a proliferation of species names in the genus. Based on these data, 53 species are reduced to synonymy with 18 existing Diaporthe species, and a new species, D. pygmaeae, is introduced. Thirteen new plant host-fungus associations are reported, all of which represent new host family records for Arecaceae. This study has recognised and resolved a total of 14 valid Diaporthe species associated with Arecaceae hosts worldwide, some of which are associated with disease symptoms. This illustrates the need for more systematic research to examine the complex of Diaporthe taxa associated with palms and determine their potential pathogenicity. By implementing a more rational framework for future studies on species delimitation in Diaporthe, this study provides a solid foundation to stabilise the taxonomy of species in the genus. Guidelines for species recognition, definition and identification in Diaporthe are included. Taxonomic novelties: New species: Diaporthe pygmaeae D.S. Pereira & A.J.L. Phillips. New synonyms: Diaporthe afzeliae Monkai & Lumyong, Diaporthe alangii C.M. Tian & Q. Yang, Diaporthe araliae-chinensis S.Y. Wang et al., Diaporthe australiana R.G. Shivas et al., Diaporthe australpacifica Y.P. Tan & R.G. Shivas, Diaporthe bombacis Monkai & Lumyong, Diaporthe caryae C.M. Tian & Q. Yang, Diaporthe chimonanthi (C.Q. Chang et al.) Y.H. Gao & L. Cai, Diaporthe conferta H. Dong et al., Diaporthe diospyrina Y.K. Bai & X.L. Fan, Diaporthe durionigena L.D. Thao et al., Diaporthe etinsideae Y.P. Tan & R.G. Shivas, Diaporthe eucalyptorum Crous & R.G. Shivas, Diaporthe fujianensis Jayaward. et al., Diaporthe fusiformis Jayaward. et al., Diaporthe globoostiolata Monkai & Lumyong, Diaporthe hainanensis Qin Yang, Diaporthe hongkongensis R.R. Gomes et al., Diaporthe hubeiensis Dissan. et al., Diaporthe infecunda R.R. Gomes et al., Diaporthe italiana Chethana et al., Diaporthe juglandigena S.Y. Wang et al., Diaporthe lagerstroemiae (C.Q. Chang et al.) Y.H. Gao & L. Cai, Diaporthe lithocarpi (Y.H. Gao et al.) Y.H. Gao & L. Cai, Diaporthe lutescens S.T. Huang et al., Diaporthe machili S.T. Huang et al., Diaporthe megabiguttulata M. Luo et al., Diaporthe middletonii R.G. Shivas et al., Diaporthe morindae M. Luo et al., Diaporthe nannuoshanensis S.T. Huang et al., Diaporthe nigra Brahman. & K.D. Hyde, Diaporthe orixae Q.T. Lu & Zhen Zhang, Diaporthe passifloricola Crous & M.J. Wingf., Diaporthe pimpinellae Abeywickrama et al., Diaporthe pseudoinconspicua T.G.L Oliveira et al., Diaporthe pungensis S.T. Huang et al., Diaporthe rhodomyrti C.M. Tian & Qin Yang, Diaporthe rosae M.C. Samar. & K.D. Hyde, Diaporthe rumicicola Manawas et al., Diaporthe salicicola R.G. Shivas et al., Diaporthe samaneae Monkai & Lumyong, Diaporthe subcylindrospora S.K. Huang et al., Diaporthe tectonae Doilom et al., Diaporthe tectonigena Doilom et al., Diaporthe theobromatis H. Dong et al., Diaporthe thunbergiicola Udayanga & K.D. Hyde, Diaporthe tuyouyouiae Y.P. Tan et al., Diaporthe unshiuensis F. Huang et al., Diaporthe vochysiae S.A. Noriler et al., Diaporthe xishuangbannaensis Hongsanan & K.D. Hyde, Diaporthe xylocarpi M.S. Calabon & E.B.G. Jones, Diaporthe zaobaisu Y.S. Guo & G.P. Wang, Diaporthe zhaoqingensis M. Luo et al. Citation: Pereira DS, Phillips AJL (2024). Diaporthe species on palms - integrative taxonomic approach for species boundaries delimitation in the genus Diaporthe, with the description of D. pygmaeae sp. nov. Studies in Mycology 109: 487-594. doi: 10.3114/sim.2024.109.08.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Mycology
Studies in Mycology 生物-真菌学
CiteScore
35.60
自引率
3.00%
发文量
7
期刊介绍: The international journal Studies in Mycology focuses on advancing the understanding of filamentous fungi, yeasts, and various aspects of mycology. It publishes comprehensive systematic monographs as well as topical issues covering a wide range of subjects including biotechnology, ecology, molecular biology, pathology, and systematics. This Open-Access journal offers unrestricted access to its content. Each issue of Studies in Mycology consists of around 5 to 6 papers, either in the form of monographs or special focused topics. Unlike traditional length restrictions, the journal encourages submissions of manuscripts with a minimum of 50 A4 pages in print. This ensures a thorough exploration and presentation of the research findings, maximizing the depth of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信