连续和时间门控荧光系统的固有随机性、噪声和检测限制。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2024-12-23 eCollection Date: 2024-01-01 DOI:10.1371/journal.pone.0313949
Nicholas H Vitale, Arjang Hassibi, Hyongsok Tom Soh, Boris Murmann, Thomas H Lee
{"title":"连续和时间门控荧光系统的固有随机性、噪声和检测限制。","authors":"Nicholas H Vitale, Arjang Hassibi, Hyongsok Tom Soh, Boris Murmann, Thomas H Lee","doi":"10.1371/journal.pone.0313949","DOIUrl":null,"url":null,"abstract":"<p><p>We present a model for the noise and inherent stochasticity of fluorescence signals in both continuous wave (CW) and time-gated (TG) conditions. When the fluorophores are subjected to an arbitrary excitation photon flux, we apply the model and compute the evolution of the probability mass function (pmf) for each quantum state comprising a fluorophore's electronic structure, and hence the dynamics of the resulting emission photon flux. Both the ensemble and stochastic models presented in this work have been verified using Monte Carlo molecular dynamic simulations that utilize the Gillespie algorithm. The implications of the model on the design of biomolecular fluorescence detection systems are explored in three relevant numerical examples. For a given system, the quantum-limited signal-to-noise ratio (QSNR) and limits of detection are computed to demonstrate how key design tradeoffs are quantified. We find that as systems scale down to micro- and nano- dimensions, the interplay between the fluorophore's photophysical qualities and use of CW or TG has ramifications on optimal design strategies when considering optical component selection, measurement speed, and system energy requirements. While CW systems remain a gold standard, TG systems can be leveraged to overcome cost and system complexity hurdles when paired with the appropriate fluorophore.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"19 12","pages":"e0313949"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666023/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inherent stochasticity, noise and limits of detection in continuous and time-gated fluorescence systems.\",\"authors\":\"Nicholas H Vitale, Arjang Hassibi, Hyongsok Tom Soh, Boris Murmann, Thomas H Lee\",\"doi\":\"10.1371/journal.pone.0313949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a model for the noise and inherent stochasticity of fluorescence signals in both continuous wave (CW) and time-gated (TG) conditions. When the fluorophores are subjected to an arbitrary excitation photon flux, we apply the model and compute the evolution of the probability mass function (pmf) for each quantum state comprising a fluorophore's electronic structure, and hence the dynamics of the resulting emission photon flux. Both the ensemble and stochastic models presented in this work have been verified using Monte Carlo molecular dynamic simulations that utilize the Gillespie algorithm. The implications of the model on the design of biomolecular fluorescence detection systems are explored in three relevant numerical examples. For a given system, the quantum-limited signal-to-noise ratio (QSNR) and limits of detection are computed to demonstrate how key design tradeoffs are quantified. We find that as systems scale down to micro- and nano- dimensions, the interplay between the fluorophore's photophysical qualities and use of CW or TG has ramifications on optimal design strategies when considering optical component selection, measurement speed, and system energy requirements. While CW systems remain a gold standard, TG systems can be leveraged to overcome cost and system complexity hurdles when paired with the appropriate fluorophore.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"19 12\",\"pages\":\"e0313949\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666023/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0313949\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0313949","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了在连续波(CW)和时间门控(TG)条件下荧光信号的噪声和固有随机性的模型。当荧光团受到任意激发光子通量时,我们应用该模型并计算了包含荧光团电子结构的每个量子态的概率质量函数(pmf)的演化,从而计算了由此产生的发射光子通量的动力学。在这项工作中提出的集合和随机模型都已经使用利用吉莱斯皮算法的蒙特卡罗分子动力学模拟进行了验证。通过三个相关的数值实例探讨了该模型对生物分子荧光检测系统设计的影响。对于给定的系统,计算量子限制的信噪比(QSNR)和检测极限,以演示如何量化关键设计权衡。我们发现,当系统缩小到微纳米尺寸时,在考虑光学元件选择、测量速度和系统能量需求时,荧光团的光物理品质与CW或TG的使用之间的相互作用会影响最佳设计策略。虽然连续波系统仍然是黄金标准,但当与适当的荧光团配对时,TG系统可以克服成本和系统复杂性障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inherent stochasticity, noise and limits of detection in continuous and time-gated fluorescence systems.

We present a model for the noise and inherent stochasticity of fluorescence signals in both continuous wave (CW) and time-gated (TG) conditions. When the fluorophores are subjected to an arbitrary excitation photon flux, we apply the model and compute the evolution of the probability mass function (pmf) for each quantum state comprising a fluorophore's electronic structure, and hence the dynamics of the resulting emission photon flux. Both the ensemble and stochastic models presented in this work have been verified using Monte Carlo molecular dynamic simulations that utilize the Gillespie algorithm. The implications of the model on the design of biomolecular fluorescence detection systems are explored in three relevant numerical examples. For a given system, the quantum-limited signal-to-noise ratio (QSNR) and limits of detection are computed to demonstrate how key design tradeoffs are quantified. We find that as systems scale down to micro- and nano- dimensions, the interplay between the fluorophore's photophysical qualities and use of CW or TG has ramifications on optimal design strategies when considering optical component selection, measurement speed, and system energy requirements. While CW systems remain a gold standard, TG systems can be leveraged to overcome cost and system complexity hurdles when paired with the appropriate fluorophore.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信