{"title":"多因素优化及交互作用分析强化槲皮素纳米泡配方及性能。","authors":"Hema Kumar A V, Chamakuri Kantlam","doi":"10.1080/10837450.2024.2441182","DOIUrl":null,"url":null,"abstract":"<p><p>The natural flavonoid Quercetin (QT) showed a potential for various health benefits, but its pharmaceutical applications are hindered by low solubility, permeability, and limited bioavailability. This research aimed to synthesize, develop and optimize polylactic acid co-glycolic acid (PLGA) nanobubbles using solvent evaporation method as a sustained delivery system for QT, thus improving stability and bioavailability. Through a four-factor, three-level Box Behnken Design, 29 experimental runs were carried out to optimize QT-PLGA nanobubbles. An optimized formulation consisted of 50 mg QT, 250 mg PLGA, and 1.89% <i>w/v</i> PVA. The nanobubbles displayed a particle size of 139.5 ± 6.24 nm, polydispersity index of 0.296 ± 0.19, and zeta potential of -23.0 ± 3.44 mV, with an entrapment efficiency of 59.24 ± 3.08%. Analysis through Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction confirmed no drug-polymer interaction, while scanning electron microscopy revealed a uniform spherical nanoparticle. <i>In vitro</i> studies exhibited an excellent drug release, and stability studies showed no significant changes after one month. <i>In vivo</i> studies in rats demonstrated increased <i>C</i><sub>max</sub> (3.03) and <i>AUC</i><sub>0-t</sub> (5.84), indicating an improved sustained release and absorption. These findings underscored a potential of QT-loaded PLGA nanobubbles to enhance the drug kinetics and bioavailability, offering possibilities for targeted drug delivery and improved therapeutic outcomes.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"10-24"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intensification of quercetin nanobubble formulation and performance by multi-factor optimization and interaction analysis.\",\"authors\":\"Hema Kumar A V, Chamakuri Kantlam\",\"doi\":\"10.1080/10837450.2024.2441182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The natural flavonoid Quercetin (QT) showed a potential for various health benefits, but its pharmaceutical applications are hindered by low solubility, permeability, and limited bioavailability. This research aimed to synthesize, develop and optimize polylactic acid co-glycolic acid (PLGA) nanobubbles using solvent evaporation method as a sustained delivery system for QT, thus improving stability and bioavailability. Through a four-factor, three-level Box Behnken Design, 29 experimental runs were carried out to optimize QT-PLGA nanobubbles. An optimized formulation consisted of 50 mg QT, 250 mg PLGA, and 1.89% <i>w/v</i> PVA. The nanobubbles displayed a particle size of 139.5 ± 6.24 nm, polydispersity index of 0.296 ± 0.19, and zeta potential of -23.0 ± 3.44 mV, with an entrapment efficiency of 59.24 ± 3.08%. Analysis through Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction confirmed no drug-polymer interaction, while scanning electron microscopy revealed a uniform spherical nanoparticle. <i>In vitro</i> studies exhibited an excellent drug release, and stability studies showed no significant changes after one month. <i>In vivo</i> studies in rats demonstrated increased <i>C</i><sub>max</sub> (3.03) and <i>AUC</i><sub>0-t</sub> (5.84), indicating an improved sustained release and absorption. These findings underscored a potential of QT-loaded PLGA nanobubbles to enhance the drug kinetics and bioavailability, offering possibilities for targeted drug delivery and improved therapeutic outcomes.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"10-24\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2441182\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2441182","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Intensification of quercetin nanobubble formulation and performance by multi-factor optimization and interaction analysis.
The natural flavonoid Quercetin (QT) showed a potential for various health benefits, but its pharmaceutical applications are hindered by low solubility, permeability, and limited bioavailability. This research aimed to synthesize, develop and optimize polylactic acid co-glycolic acid (PLGA) nanobubbles using solvent evaporation method as a sustained delivery system for QT, thus improving stability and bioavailability. Through a four-factor, three-level Box Behnken Design, 29 experimental runs were carried out to optimize QT-PLGA nanobubbles. An optimized formulation consisted of 50 mg QT, 250 mg PLGA, and 1.89% w/v PVA. The nanobubbles displayed a particle size of 139.5 ± 6.24 nm, polydispersity index of 0.296 ± 0.19, and zeta potential of -23.0 ± 3.44 mV, with an entrapment efficiency of 59.24 ± 3.08%. Analysis through Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction confirmed no drug-polymer interaction, while scanning electron microscopy revealed a uniform spherical nanoparticle. In vitro studies exhibited an excellent drug release, and stability studies showed no significant changes after one month. In vivo studies in rats demonstrated increased Cmax (3.03) and AUC0-t (5.84), indicating an improved sustained release and absorption. These findings underscored a potential of QT-loaded PLGA nanobubbles to enhance the drug kinetics and bioavailability, offering possibilities for targeted drug delivery and improved therapeutic outcomes.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.