Katharina Dietz, Carina Sagstetter, Melanie Speck, Arne Roth, Steffen Klamt, Jonathan Thomas Fabarius
{"title":"一种用于甲基营养化生产乙醇酸的新工程菌株。","authors":"Katharina Dietz, Carina Sagstetter, Melanie Speck, Arne Roth, Steffen Klamt, Jonathan Thomas Fabarius","doi":"10.1186/s12934-024-02583-y","DOIUrl":null,"url":null,"abstract":"<p><p>The conversion of CO<sub>2</sub> into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M. extorquens TK 0001 for production of glycolic acid. Application of constraint-based metabolic modeling reveals the great potential of M. extorquens for that purpose, which is not yet described in literature. In particular, a superior theoretical product yield of 1.0 C-mol<sub>Glycolic acid</sub> C-mol<sub>Methanol</sub><sup>-1</sup> is predicted by our model, surpassing theoretical yields of sugar fermentation. Following this approach, we show here that strain engineering is viable and present 1st generation strains producing glycolic acid via a heterologous NADPH-dependent glyoxylate reductase. It was found that lactic acid is a surprising by-product of glycolic acid formation in M. extorquens, most likely due to a surplus of available NADH upon glycolic acid synthesis. Finally, the best performing strain was tested in a fed-batch fermentation producing a mixture of up to total 1.2 g L<sup>-1</sup> glycolic acid and lactic acid. Several key performance indicators of our glycolic acid producer strain are superior to state-of-the-art synthetic methylotrophs. The presented results open the door for further strain engineering of the native methylotroph M. extorquens and pave the way to produce two promising biopolymer building blocks from green methanol, i.e., glycolic acid and lactic acid.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"344"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665112/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel engineered strain of Methylorubrum extorquens for methylotrophic production of glycolic acid.\",\"authors\":\"Katharina Dietz, Carina Sagstetter, Melanie Speck, Arne Roth, Steffen Klamt, Jonathan Thomas Fabarius\",\"doi\":\"10.1186/s12934-024-02583-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The conversion of CO<sub>2</sub> into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M. extorquens TK 0001 for production of glycolic acid. Application of constraint-based metabolic modeling reveals the great potential of M. extorquens for that purpose, which is not yet described in literature. In particular, a superior theoretical product yield of 1.0 C-mol<sub>Glycolic acid</sub> C-mol<sub>Methanol</sub><sup>-1</sup> is predicted by our model, surpassing theoretical yields of sugar fermentation. Following this approach, we show here that strain engineering is viable and present 1st generation strains producing glycolic acid via a heterologous NADPH-dependent glyoxylate reductase. It was found that lactic acid is a surprising by-product of glycolic acid formation in M. extorquens, most likely due to a surplus of available NADH upon glycolic acid synthesis. Finally, the best performing strain was tested in a fed-batch fermentation producing a mixture of up to total 1.2 g L<sup>-1</sup> glycolic acid and lactic acid. Several key performance indicators of our glycolic acid producer strain are superior to state-of-the-art synthetic methylotrophs. The presented results open the door for further strain engineering of the native methylotroph M. extorquens and pave the way to produce two promising biopolymer building blocks from green methanol, i.e., glycolic acid and lactic acid.</p>\",\"PeriodicalId\":18582,\"journal\":{\"name\":\"Microbial Cell Factories\",\"volume\":\"23 1\",\"pages\":\"344\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell Factories\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12934-024-02583-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02583-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
将二氧化碳转化为甲醇是化工和生物技术行业最有前途的新兴可再生途径之一。在这方面,原生甲基营养物具有将甲醇转化为增值产品的巨大潜力,但需要有针对性的工程方法来提高其性能并扩大其产品范围。在这里,我们使用基于系统的方法来分析和设计M.敲诈勒索tk0001乙醇酸的生产。基于约束的代谢模型的应用揭示了M.敲诈勒索的巨大潜力,这在文献中尚未描述。特别是,我们的模型预测了1.0 c -乙醇酸c -甲醇-1的理论产率,超过了糖发酵的理论产率。根据这种方法,我们在这里证明了菌株工程是可行的,并提出了通过异源nadph依赖的乙醛酸还原酶生产乙醇酸的第一代菌株。研究发现,乳酸是m.o resquens中乙醇酸形成的一种令人惊讶的副产物,很可能是由于乙醇酸合成时可用的NADH过剩。最后,对表现最好的菌株进行补料分批发酵,产生最多1.2 g L-1乙醇酸和乳酸的混合物。我们的乙醇酸生产菌株的几个关键性能指标优于最先进的合成甲基营养菌。本研究结果为天然甲基化菌m.o requens的进一步菌株工程打开了大门,并为从绿色甲醇中生产两种有前途的生物聚合物构建块(即乙醇酸和乳酸)铺平了道路。
A novel engineered strain of Methylorubrum extorquens for methylotrophic production of glycolic acid.
The conversion of CO2 into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M. extorquens TK 0001 for production of glycolic acid. Application of constraint-based metabolic modeling reveals the great potential of M. extorquens for that purpose, which is not yet described in literature. In particular, a superior theoretical product yield of 1.0 C-molGlycolic acid C-molMethanol-1 is predicted by our model, surpassing theoretical yields of sugar fermentation. Following this approach, we show here that strain engineering is viable and present 1st generation strains producing glycolic acid via a heterologous NADPH-dependent glyoxylate reductase. It was found that lactic acid is a surprising by-product of glycolic acid formation in M. extorquens, most likely due to a surplus of available NADH upon glycolic acid synthesis. Finally, the best performing strain was tested in a fed-batch fermentation producing a mixture of up to total 1.2 g L-1 glycolic acid and lactic acid. Several key performance indicators of our glycolic acid producer strain are superior to state-of-the-art synthetic methylotrophs. The presented results open the door for further strain engineering of the native methylotroph M. extorquens and pave the way to produce two promising biopolymer building blocks from green methanol, i.e., glycolic acid and lactic acid.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems