DNAJC12下调通过增加组蛋白H4K5乳酸化诱导神经母细胞瘤进展。

IF 5.3 2区 生物学 Q2 CELL BIOLOGY
Yaqi Yang, Jiejun Wen, Susu Lou, Yali Han, Yi Pan, Ying Zhong, Qiao He, Yinfeng Zhang, Xi Mo, Jing Ma, Nan She
{"title":"DNAJC12下调通过增加组蛋白H4K5乳酸化诱导神经母细胞瘤进展。","authors":"Yaqi Yang, Jiejun Wen, Susu Lou, Yali Han, Yi Pan, Ying Zhong, Qiao He, Yinfeng Zhang, Xi Mo, Jing Ma, Nan She","doi":"10.1093/jmcb/mjae056","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroblastoma (NB) is the most common extracranial solid tumor in children. Despite treatment advances, the survival rates of high-risk NB patients remain low. This highlights the urgent need for a deeper understanding of the molecular mechanisms driving NB progression to support the development of new therapeutic strategies. In this study, we demonstrated that the reduced levels of DNAJC12, a protein involved in metabolic regulation, are associated with poor prognosis in NB patients. Our data indicate that low DNAJC12 expression activates glycolysis in NB cells, leading to increased lactic acid production and histone H4 lysine 5 lactylation (H4K5la). Elevated H4K5la upregulates the transcription of COL1A1, a gene implicated in cell metastasis. Immunohistochemistry staining of NB patient samples confirmed that high H4K5la levels correlate with poor clinical outcomes. Furthermore, we showed that inhibiting glycolysis, reducing H4K5la, or targeting COL1A1 can mitigate the invasive behavior of NB cells. These findings reveal a critical link between metabolic reprogramming and epigenetic modifications in the context of NB progression, suggesting that H4K5la could serve as a novel diagnostic and prognostic marker, and shed light on identifying new therapeutic targets within metabolic pathways for the treatment of this aggressive pediatric cancer.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNAJC12 downregulation induces neuroblastoma progression via increased histone H4K5 lactylation.\",\"authors\":\"Yaqi Yang, Jiejun Wen, Susu Lou, Yali Han, Yi Pan, Ying Zhong, Qiao He, Yinfeng Zhang, Xi Mo, Jing Ma, Nan She\",\"doi\":\"10.1093/jmcb/mjae056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroblastoma (NB) is the most common extracranial solid tumor in children. Despite treatment advances, the survival rates of high-risk NB patients remain low. This highlights the urgent need for a deeper understanding of the molecular mechanisms driving NB progression to support the development of new therapeutic strategies. In this study, we demonstrated that the reduced levels of DNAJC12, a protein involved in metabolic regulation, are associated with poor prognosis in NB patients. Our data indicate that low DNAJC12 expression activates glycolysis in NB cells, leading to increased lactic acid production and histone H4 lysine 5 lactylation (H4K5la). Elevated H4K5la upregulates the transcription of COL1A1, a gene implicated in cell metastasis. Immunohistochemistry staining of NB patient samples confirmed that high H4K5la levels correlate with poor clinical outcomes. Furthermore, we showed that inhibiting glycolysis, reducing H4K5la, or targeting COL1A1 can mitigate the invasive behavior of NB cells. These findings reveal a critical link between metabolic reprogramming and epigenetic modifications in the context of NB progression, suggesting that H4K5la could serve as a novel diagnostic and prognostic marker, and shed light on identifying new therapeutic targets within metabolic pathways for the treatment of this aggressive pediatric cancer.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjae056\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjae056","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经母细胞瘤(NB)是儿童最常见的颅外实体瘤。尽管治疗取得了进展,但高危NB患者的生存率仍然很低。这突出了迫切需要更深入地了解驱动NB进展的分子机制,以支持新治疗策略的发展。在这项研究中,我们证明了参与代谢调节的蛋白质DNAJC12水平的降低与NB患者的不良预后有关。我们的数据表明,低DNAJC12表达激活NB细胞中的糖酵解,导致乳酸生成和组蛋白H4赖氨酸5乳酸化(H4K5la)增加。升高的H4K5la可上调与细胞转移有关的COL1A1基因的转录。NB患者样本的免疫组织化学染色证实,高H4K5la水平与较差的临床结果相关。此外,我们发现抑制糖酵解、降低H4K5la或靶向COL1A1可以减轻NB细胞的侵袭行为。这些发现揭示了NB进展背景下代谢重编程和表观遗传修饰之间的关键联系,表明H4K5la可以作为一种新的诊断和预后标志物,并阐明了在治疗这种侵袭性儿童癌症的代谢途径中发现新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNAJC12 downregulation induces neuroblastoma progression via increased histone H4K5 lactylation.

Neuroblastoma (NB) is the most common extracranial solid tumor in children. Despite treatment advances, the survival rates of high-risk NB patients remain low. This highlights the urgent need for a deeper understanding of the molecular mechanisms driving NB progression to support the development of new therapeutic strategies. In this study, we demonstrated that the reduced levels of DNAJC12, a protein involved in metabolic regulation, are associated with poor prognosis in NB patients. Our data indicate that low DNAJC12 expression activates glycolysis in NB cells, leading to increased lactic acid production and histone H4 lysine 5 lactylation (H4K5la). Elevated H4K5la upregulates the transcription of COL1A1, a gene implicated in cell metastasis. Immunohistochemistry staining of NB patient samples confirmed that high H4K5la levels correlate with poor clinical outcomes. Furthermore, we showed that inhibiting glycolysis, reducing H4K5la, or targeting COL1A1 can mitigate the invasive behavior of NB cells. These findings reveal a critical link between metabolic reprogramming and epigenetic modifications in the context of NB progression, suggesting that H4K5la could serve as a novel diagnostic and prognostic marker, and shed light on identifying new therapeutic targets within metabolic pathways for the treatment of this aggressive pediatric cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信