基于深度学习的乳头创伤评估系统的开发。

IF 2.1 4区 医学 Q2 NURSING
Journal of Human Lactation Pub Date : 2025-02-01 Epub Date: 2024-12-24 DOI:10.1177/08903344241303867
Maya Nakamura, Hiroyuki Sugimori, Yasuhiko Ebina
{"title":"基于深度学习的乳头创伤评估系统的开发。","authors":"Maya Nakamura, Hiroyuki Sugimori, Yasuhiko Ebina","doi":"10.1177/08903344241303867","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>No research has been conducted on the use of deep learning for breastfeeding support.</p><p><strong>Research aim: </strong>This study aims to develop a nipple trauma evaluation system using deep learning.</p><p><strong>Methods: </strong>We used an exploratory data analysis approach to develop a deep-learning model for medical imaging. Employing object detection and classification, this Japanese study retrieved 753 images from a previous study. The classification protocol, based on the \"seven signs of nipple trauma associated with breastfeeding,\" categorized the images into eight classes. For practical purposes, the eight original classes were consolidated into four broader categories: \"None,\" \"Minor,\" \"Moderate,\" and \"Severe,\" using data augmentation procedures that were consistent with the original classification system. The Precision, Recall, Overall Accuracy, and Area Under the Curve (AUC) were calculated, and the model's efficiency was evaluated using Frames Per Second (FPS).</p><p><strong>Results: </strong>The object detector's high mean average precision and frames per second rate for nipple and areola detection, confirmed exceptional accuracy. The eight-class image classifier returned notable AUC values, with fissures, peeling, purpura, and scabbing exceeding 0.8. The highest average recall and precision was for scabbing, and the lowest for blistering. The four-class classifier accurately predicted severe conditions, with an average AUC > 0.7, whereas categories without classifications and those deemed minor had lower recall and precision rates.</p><p><strong>Conclusions: </strong>A sophisticated deep learning system detects and classifies nipple trauma automatically, potentially aiding breastfeeding caregivers through objective image assessment and operational improvements.</p><p><strong>Abstract in japanese: </strong>: におけるのにするはわれていない。: は、をいたシステムのをとした。: では、をいたモデルをするため、データアプローチをいた。およびのをい、でわれたでされた753のをした。「にうの7」にづき、を8クラスにした。をし、4つのカテゴリ「なし」、「」、「」、「」の4つのカテゴリにし、のシステムにするデータをった。、、Overall Accuracy、AUC()をし、モデルのはFPS(Frames Per Second)でした。: におけるいmAP()とFPSがされ、およびのがされた。8クラスのは、、、、で0.8をえるなAUCがられた。とがもかったのはであり、でもかった。4クラスのはのをにし、AUCは0.7をえたが、なしやとされるカテゴリはとがいとなった。: をしたこのなシステムは、のとをでうことができ、なをじて、のとをサポートするなツールとなりる。Back Translation Completed by Hiroko Hongo, MSW, PhD, IBCLC.</p>","PeriodicalId":15948,"journal":{"name":"Journal of Human Lactation","volume":" ","pages":"105-114"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Nipple Trauma Evaluation System With Deep Learning.\",\"authors\":\"Maya Nakamura, Hiroyuki Sugimori, Yasuhiko Ebina\",\"doi\":\"10.1177/08903344241303867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>No research has been conducted on the use of deep learning for breastfeeding support.</p><p><strong>Research aim: </strong>This study aims to develop a nipple trauma evaluation system using deep learning.</p><p><strong>Methods: </strong>We used an exploratory data analysis approach to develop a deep-learning model for medical imaging. Employing object detection and classification, this Japanese study retrieved 753 images from a previous study. The classification protocol, based on the \\\"seven signs of nipple trauma associated with breastfeeding,\\\" categorized the images into eight classes. For practical purposes, the eight original classes were consolidated into four broader categories: \\\"None,\\\" \\\"Minor,\\\" \\\"Moderate,\\\" and \\\"Severe,\\\" using data augmentation procedures that were consistent with the original classification system. The Precision, Recall, Overall Accuracy, and Area Under the Curve (AUC) were calculated, and the model's efficiency was evaluated using Frames Per Second (FPS).</p><p><strong>Results: </strong>The object detector's high mean average precision and frames per second rate for nipple and areola detection, confirmed exceptional accuracy. The eight-class image classifier returned notable AUC values, with fissures, peeling, purpura, and scabbing exceeding 0.8. The highest average recall and precision was for scabbing, and the lowest for blistering. The four-class classifier accurately predicted severe conditions, with an average AUC > 0.7, whereas categories without classifications and those deemed minor had lower recall and precision rates.</p><p><strong>Conclusions: </strong>A sophisticated deep learning system detects and classifies nipple trauma automatically, potentially aiding breastfeeding caregivers through objective image assessment and operational improvements.</p><p><strong>Abstract in japanese: </strong>: におけるのにするはわれていない。: は、をいたシステムのをとした。: では、をいたモデルをするため、データアプローチをいた。およびのをい、でわれたでされた753のをした。「にうの7」にづき、を8クラスにした。をし、4つのカテゴリ「なし」、「」、「」、「」の4つのカテゴリにし、のシステムにするデータをった。、、Overall Accuracy、AUC()をし、モデルのはFPS(Frames Per Second)でした。: におけるいmAP()とFPSがされ、およびのがされた。8クラスのは、、、、で0.8をえるなAUCがられた。とがもかったのはであり、でもかった。4クラスのはのをにし、AUCは0.7をえたが、なしやとされるカテゴリはとがいとなった。: をしたこのなシステムは、のとをでうことができ、なをじて、のとをサポートするなツールとなりる。Back Translation Completed by Hiroko Hongo, MSW, PhD, IBCLC.</p>\",\"PeriodicalId\":15948,\"journal\":{\"name\":\"Journal of Human Lactation\",\"volume\":\" \",\"pages\":\"105-114\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Lactation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08903344241303867\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NURSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Lactation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08903344241303867","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NURSING","Score":null,"Total":0}
引用次数: 0

摘要

背景:目前还没有关于使用深度学习进行母乳喂养支持的研究。研究目的:本研究旨在开发一种基于深度学习的乳头创伤评估系统。方法:采用探索性数据分析方法建立医学影像学的深度学习模型。采用目标检测和分类,这项日本研究从先前的研究中检索了753张图像。分类方案基于“与母乳喂养有关的乳头创伤的七个迹象”,将这些图像分为八类。出于实际目的,使用与原始分类系统一致的数据增强过程,将八个原始类别合并为四个更广泛的类别:“无”、“轻微”、“中度”和“严重”。计算了模型的精密度、召回率、总体准确度和曲线下面积(AUC),并以每秒帧数(FPS)来评估模型的效率。结果:目标检测器对乳头和乳晕的检测具有较高的平均精度和帧/秒率,证实了其卓越的准确性。8类图像分类器返回显著AUC值,裂隙、脱皮、紫癜和结痂均超过0.8。平均召回率和准确率最高的是结痂,最低的是起泡。四类分类器准确地预测了严重的情况,平均AUC为bb0 0.7,而没有分类的类别和被认为轻微的类别的召回率和准确率较低。结论:一个复杂的深度学习系统可以自动检测和分类乳头创伤,可能通过客观的图像评估和操作改进来帮助母乳喂养护理人员。日语摘要:::。:,。:。753、753、753、753、753、753、753、753。“。をし4つのカテゴリ”なし 」、「」、「」、「」 の4つのカテゴリにし,のシステムにするデータをった。,总体精度,AUC()をし,モデルのはFPS(每秒帧数)でした。: > > > > > > > > > > > > > > > > > > > > > >0.8 8クラスのは…でをえるなAUCがられた。> > > > > > > > > > > > > >4クラスのはのをにし,AUCは0.7をえたが,なしやとされるカテゴリはとがいとなった。:。由Hiroko Hongo, MSW, PhD, IBCLC完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of Nipple Trauma Evaluation System With Deep Learning.

Background: No research has been conducted on the use of deep learning for breastfeeding support.

Research aim: This study aims to develop a nipple trauma evaluation system using deep learning.

Methods: We used an exploratory data analysis approach to develop a deep-learning model for medical imaging. Employing object detection and classification, this Japanese study retrieved 753 images from a previous study. The classification protocol, based on the "seven signs of nipple trauma associated with breastfeeding," categorized the images into eight classes. For practical purposes, the eight original classes were consolidated into four broader categories: "None," "Minor," "Moderate," and "Severe," using data augmentation procedures that were consistent with the original classification system. The Precision, Recall, Overall Accuracy, and Area Under the Curve (AUC) were calculated, and the model's efficiency was evaluated using Frames Per Second (FPS).

Results: The object detector's high mean average precision and frames per second rate for nipple and areola detection, confirmed exceptional accuracy. The eight-class image classifier returned notable AUC values, with fissures, peeling, purpura, and scabbing exceeding 0.8. The highest average recall and precision was for scabbing, and the lowest for blistering. The four-class classifier accurately predicted severe conditions, with an average AUC > 0.7, whereas categories without classifications and those deemed minor had lower recall and precision rates.

Conclusions: A sophisticated deep learning system detects and classifies nipple trauma automatically, potentially aiding breastfeeding caregivers through objective image assessment and operational improvements.

Abstract in japanese: : におけるのにするはわれていない。: は、をいたシステムのをとした。: では、をいたモデルをするため、データアプローチをいた。およびのをい、でわれたでされた753のをした。「にうの7」にづき、を8クラスにした。をし、4つのカテゴリ「なし」、「」、「」、「」の4つのカテゴリにし、のシステムにするデータをった。、、Overall Accuracy、AUC()をし、モデルのはFPS(Frames Per Second)でした。: におけるいmAP()とFPSがされ、およびのがされた。8クラスのは、、、、で0.8をえるなAUCがられた。とがもかったのはであり、でもかった。4クラスのはのをにし、AUCは0.7をえたが、なしやとされるカテゴリはとがいとなった。: をしたこのなシステムは、のとをでうことができ、なをじて、のとをサポートするなツールとなりる。Back Translation Completed by Hiroko Hongo, MSW, PhD, IBCLC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Human Lactation
Journal of Human Lactation 医学-妇产科学
CiteScore
5.00
自引率
11.50%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Committed to the promotion of diversity and equity in all our policies and practices, our aims are: To provide our readers and the international communities of clinicians, educators and scholars working in the field of lactation with current and quality-based evidence, from a broad array of disciplines, including the medical sciences, basic sciences, social sciences and the humanities. To provide student and novice researchers, as well as, researchers whose native language is not English, with expert editorial guidance while preparing their work for publication in JHL. In each issue, the Journal of Human Lactation publishes original research, original theoretical and conceptual articles, discussions of policy and practice issues, and the following special features: Advocacy: A column that discusses a ‘hot’ topic in lactation advocacy About Research: A column focused on an in-depth discussion of a different research topic each issue Lactation Newsmakers: An interview with a widely-recognized outstanding expert in the field from around the globe Research Commentary: A brief discussion of the issues raised in a specific research article published in the current issue Book review(s): Reviews written by content experts about relevant new publications International News Briefs: From major international lactation organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信