Jiping Zhang, Alice E Pollard, Eleanor F Pearson, David Carling, Benoit Viollet, Kate L J Ellacott, Craig Beall
{"title":"降糖刺激巨噬细胞细胞因子释放被amp激活的蛋白激酶激活抑制。","authors":"Jiping Zhang, Alice E Pollard, Eleanor F Pearson, David Carling, Benoit Viollet, Kate L J Ellacott, Craig Beall","doi":"10.1111/dme.15456","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Acute hypoglycaemia promotes pro-inflammatory cytokine production, increasing the risk for cardiovascular events in diabetes. AMP-activated protein kinase (AMPK) is regulated by and influences the production of pro-inflammatory cytokines. We sought to examine the mechanistic role of AMPK in low glucose-induced changes in the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF), which is elevated in people with diabetes.</p><p><strong>Methods: </strong>Macrophage cell line Raw264.7 cells, primary macrophage bone marrow-derived macrophages obtained from wild-type mice or AMPK γ1 gain-of-function mice, were used, as were AMPKα1/α2 knockout mouse embryonic fibroblasts (MEFs). Allosteric AMPK activators PF-06409577 and BI-9774 were used in conjunction with inhibitor SBI-0206965. We examined changes in protein phosphorylation/expression using western blotting and protein localisation using immunofluorescence. Metabolic function was assessed using extracellular flux analyses and luciferase-based ATP assay. Cytokine release was quantified by enzyme-linked immunosorbent assay (ELISA). Oxidative stress was detected using a fluorescence-based reactive oxygen species (ROS) assay, and cell viability was examined using flow cytometry.</p><p><strong>Results: </strong>Macrophages exposed to low glucose showed a transient and modest activation of AMPK and a metabolic shift towards increased oxidative phosphorylation. Moreover, low glucose increased oxidative stress and augmented the release of macrophage MIF. However, pharmacological activation of AMPK by PF-06409577 and BI-9774 attenuated low glucose-induced MIF release, with a similar trend noted with genetic activation using AMPKγ1 gain-of-function (D316A) mice, which produced a mild effect on low glucose-induced MIF release. Inhibition of NFĸB signalling diminished MIF release and AMPK activation modestly but significantly reduced low glucose-induced nuclear translocation of NFĸB.</p><p><strong>Conclusions: </strong>Taken together, these data indicate that pharmacological AMPK activation suppresses the release of MIF from macrophages caused by energy stress, suggesting that AMPK activation could be a useful strategy for mitigating hypoglycaemia-induced inflammation.</p>","PeriodicalId":11251,"journal":{"name":"Diabetic Medicine","volume":" ","pages":"e15456"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypoglycaemic stimulation of macrophage cytokine release is suppressed by AMP-activated protein kinase activation.\",\"authors\":\"Jiping Zhang, Alice E Pollard, Eleanor F Pearson, David Carling, Benoit Viollet, Kate L J Ellacott, Craig Beall\",\"doi\":\"10.1111/dme.15456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Acute hypoglycaemia promotes pro-inflammatory cytokine production, increasing the risk for cardiovascular events in diabetes. AMP-activated protein kinase (AMPK) is regulated by and influences the production of pro-inflammatory cytokines. We sought to examine the mechanistic role of AMPK in low glucose-induced changes in the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF), which is elevated in people with diabetes.</p><p><strong>Methods: </strong>Macrophage cell line Raw264.7 cells, primary macrophage bone marrow-derived macrophages obtained from wild-type mice or AMPK γ1 gain-of-function mice, were used, as were AMPKα1/α2 knockout mouse embryonic fibroblasts (MEFs). Allosteric AMPK activators PF-06409577 and BI-9774 were used in conjunction with inhibitor SBI-0206965. We examined changes in protein phosphorylation/expression using western blotting and protein localisation using immunofluorescence. Metabolic function was assessed using extracellular flux analyses and luciferase-based ATP assay. Cytokine release was quantified by enzyme-linked immunosorbent assay (ELISA). Oxidative stress was detected using a fluorescence-based reactive oxygen species (ROS) assay, and cell viability was examined using flow cytometry.</p><p><strong>Results: </strong>Macrophages exposed to low glucose showed a transient and modest activation of AMPK and a metabolic shift towards increased oxidative phosphorylation. Moreover, low glucose increased oxidative stress and augmented the release of macrophage MIF. However, pharmacological activation of AMPK by PF-06409577 and BI-9774 attenuated low glucose-induced MIF release, with a similar trend noted with genetic activation using AMPKγ1 gain-of-function (D316A) mice, which produced a mild effect on low glucose-induced MIF release. Inhibition of NFĸB signalling diminished MIF release and AMPK activation modestly but significantly reduced low glucose-induced nuclear translocation of NFĸB.</p><p><strong>Conclusions: </strong>Taken together, these data indicate that pharmacological AMPK activation suppresses the release of MIF from macrophages caused by energy stress, suggesting that AMPK activation could be a useful strategy for mitigating hypoglycaemia-induced inflammation.</p>\",\"PeriodicalId\":11251,\"journal\":{\"name\":\"Diabetic Medicine\",\"volume\":\" \",\"pages\":\"e15456\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetic Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/dme.15456\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/dme.15456","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Hypoglycaemic stimulation of macrophage cytokine release is suppressed by AMP-activated protein kinase activation.
Aims: Acute hypoglycaemia promotes pro-inflammatory cytokine production, increasing the risk for cardiovascular events in diabetes. AMP-activated protein kinase (AMPK) is regulated by and influences the production of pro-inflammatory cytokines. We sought to examine the mechanistic role of AMPK in low glucose-induced changes in the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF), which is elevated in people with diabetes.
Methods: Macrophage cell line Raw264.7 cells, primary macrophage bone marrow-derived macrophages obtained from wild-type mice or AMPK γ1 gain-of-function mice, were used, as were AMPKα1/α2 knockout mouse embryonic fibroblasts (MEFs). Allosteric AMPK activators PF-06409577 and BI-9774 were used in conjunction with inhibitor SBI-0206965. We examined changes in protein phosphorylation/expression using western blotting and protein localisation using immunofluorescence. Metabolic function was assessed using extracellular flux analyses and luciferase-based ATP assay. Cytokine release was quantified by enzyme-linked immunosorbent assay (ELISA). Oxidative stress was detected using a fluorescence-based reactive oxygen species (ROS) assay, and cell viability was examined using flow cytometry.
Results: Macrophages exposed to low glucose showed a transient and modest activation of AMPK and a metabolic shift towards increased oxidative phosphorylation. Moreover, low glucose increased oxidative stress and augmented the release of macrophage MIF. However, pharmacological activation of AMPK by PF-06409577 and BI-9774 attenuated low glucose-induced MIF release, with a similar trend noted with genetic activation using AMPKγ1 gain-of-function (D316A) mice, which produced a mild effect on low glucose-induced MIF release. Inhibition of NFĸB signalling diminished MIF release and AMPK activation modestly but significantly reduced low glucose-induced nuclear translocation of NFĸB.
Conclusions: Taken together, these data indicate that pharmacological AMPK activation suppresses the release of MIF from macrophages caused by energy stress, suggesting that AMPK activation could be a useful strategy for mitigating hypoglycaemia-induced inflammation.
期刊介绍:
Diabetic Medicine, the official journal of Diabetes UK, is published monthly simultaneously, in print and online editions.
The journal publishes a range of key information on all clinical aspects of diabetes mellitus, ranging from human genetic studies through clinical physiology and trials to diabetes epidemiology. We do not publish original animal or cell culture studies unless they are part of a study of clinical diabetes involving humans. Categories of publication include research articles, reviews, editorials, commentaries, and correspondence. All material is peer-reviewed.
We aim to disseminate knowledge about diabetes research with the goal of improving the management of people with diabetes. The journal therefore seeks to provide a forum for the exchange of ideas between clinicians and researchers worldwide. Topics covered are of importance to all healthcare professionals working with people with diabetes, whether in primary care or specialist services.
Surplus generated from the sale of Diabetic Medicine is used by Diabetes UK to know diabetes better and fight diabetes more effectively on behalf of all people affected by and at risk of diabetes as well as their families and carers.”