{"title":"苦蜂蜜对脑疟疾引起的炎性小体细胞死亡的影响:基于网络药理学的计算机评价。","authors":"M O Daniyan, O B Adeoye, E Osirim, I D Asiyanbola","doi":"10.18097/PBMC20247006442","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebral malaria (CM) is a fatal complication of Plasmodium falciparum infection. The biological and physiological links between CM, inflammation, and inflammasome, point to the complexity of its pathology. Resistance to available and affordable drugs, worsening economic crisis, and urgent need for integration of orthodox with traditional/alternative medicine, actualized the search for sustainable pharmacotherapy. Previous works from our team on the medicinal properties of bitter honey have established botanical and bioactive markers, inhibitory effects on pancreatic alpha-amylase activity, and anti-dyslipidemia, cardio-protective, and ameliorative effects on hepatorenal damage in streptozotocin-induced diabetic rats. In this study, we have identified bitter honey (BH) derived phytochemicals using gas chromatography coupled with mass spectrometry (GC-MS), and 9 targets from genes associated with CM, inflammation, inflammasome, and BH phytochemicals. Network analysis revealed significant functional and physical interactions among these targets and NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3). Molecular docking of bitter honey-derived phytochemicals against these targets identified 3 most promising phytochemical candidates for further experimental validation. Based on these results, we predict that bitter honey may aid in the suppression of CM-mediated inflammasome cell death via its interactions with these targets.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":"70 6","pages":"442-455"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of bitter honey against cerebral malaria-induced inflammasome cell death: network pharmacology-based in silico evaluation.\",\"authors\":\"M O Daniyan, O B Adeoye, E Osirim, I D Asiyanbola\",\"doi\":\"10.18097/PBMC20247006442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebral malaria (CM) is a fatal complication of Plasmodium falciparum infection. The biological and physiological links between CM, inflammation, and inflammasome, point to the complexity of its pathology. Resistance to available and affordable drugs, worsening economic crisis, and urgent need for integration of orthodox with traditional/alternative medicine, actualized the search for sustainable pharmacotherapy. Previous works from our team on the medicinal properties of bitter honey have established botanical and bioactive markers, inhibitory effects on pancreatic alpha-amylase activity, and anti-dyslipidemia, cardio-protective, and ameliorative effects on hepatorenal damage in streptozotocin-induced diabetic rats. In this study, we have identified bitter honey (BH) derived phytochemicals using gas chromatography coupled with mass spectrometry (GC-MS), and 9 targets from genes associated with CM, inflammation, inflammasome, and BH phytochemicals. Network analysis revealed significant functional and physical interactions among these targets and NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3). Molecular docking of bitter honey-derived phytochemicals against these targets identified 3 most promising phytochemical candidates for further experimental validation. Based on these results, we predict that bitter honey may aid in the suppression of CM-mediated inflammasome cell death via its interactions with these targets.</p>\",\"PeriodicalId\":8889,\"journal\":{\"name\":\"Biomeditsinskaya khimiya\",\"volume\":\"70 6\",\"pages\":\"442-455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomeditsinskaya khimiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18097/PBMC20247006442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20247006442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The effect of bitter honey against cerebral malaria-induced inflammasome cell death: network pharmacology-based in silico evaluation.
Cerebral malaria (CM) is a fatal complication of Plasmodium falciparum infection. The biological and physiological links between CM, inflammation, and inflammasome, point to the complexity of its pathology. Resistance to available and affordable drugs, worsening economic crisis, and urgent need for integration of orthodox with traditional/alternative medicine, actualized the search for sustainable pharmacotherapy. Previous works from our team on the medicinal properties of bitter honey have established botanical and bioactive markers, inhibitory effects on pancreatic alpha-amylase activity, and anti-dyslipidemia, cardio-protective, and ameliorative effects on hepatorenal damage in streptozotocin-induced diabetic rats. In this study, we have identified bitter honey (BH) derived phytochemicals using gas chromatography coupled with mass spectrometry (GC-MS), and 9 targets from genes associated with CM, inflammation, inflammasome, and BH phytochemicals. Network analysis revealed significant functional and physical interactions among these targets and NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3). Molecular docking of bitter honey-derived phytochemicals against these targets identified 3 most promising phytochemical candidates for further experimental validation. Based on these results, we predict that bitter honey may aid in the suppression of CM-mediated inflammasome cell death via its interactions with these targets.
Biomeditsinskaya khimiyaBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍:
The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).