具有高度可调谐光学和电子特性的非晶氮化物半导体:Ca-Zn-N薄膜无序化的好处。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Elise Sirotti, Stefan Böhm, Gabriel Grötzner, Maximilian Christis, Laura I Wagner, Lukas Wolz, Frans Munnik, Johanna Eichhorn, Martin Stutzmann, Verena Streibel, Ian D Sharp
{"title":"具有高度可调谐光学和电子特性的非晶氮化物半导体:Ca-Zn-N薄膜无序化的好处。","authors":"Elise Sirotti, Stefan Böhm, Gabriel Grötzner, Maximilian Christis, Laura I Wagner, Lukas Wolz, Frans Munnik, Johanna Eichhorn, Martin Stutzmann, Verena Streibel, Ian D Sharp","doi":"10.1039/d4mh01525h","DOIUrl":null,"url":null,"abstract":"<p><p>Semiconducting ternary nitrides are a promising class of materials that have received increasing attention in recent years, but often show high free electron concentrations due to the low defect formation energies of nitrogen vacancies and substitutional oxygen, leading to degenerate n-type doping. To achieve non-degenerate behavior, we now investigate a family of amorphous calcium-zinc nitride (Ca-Zn-N) thin films. By adjusting the metal cation ratios, we demonstrate band gap tunability between 1.4 and 2.0 eV and control over the charge carrier concentration across six orders of magnitude, all while maintaining high mobilities between 5 and 70 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>. The combination of favorable electronic properties, low synthesis temperatures, and earth-abundant elements makes amorphous Ca-Zn-N highly promising for future sustainable electronics. Moreover, the successful synthesis of such materials, as well as their broad optical and electrical tunability, paves the way for a new class of tailored functional materials: amorphous nitride semiconductors - ANSs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667462/pdf/","citationCount":"0","resultStr":"{\"title\":\"Amorphous nitride semiconductors with highly tunable optical and electronic properties: the benefits of disorder in Ca-Zn-N thin films.\",\"authors\":\"Elise Sirotti, Stefan Böhm, Gabriel Grötzner, Maximilian Christis, Laura I Wagner, Lukas Wolz, Frans Munnik, Johanna Eichhorn, Martin Stutzmann, Verena Streibel, Ian D Sharp\",\"doi\":\"10.1039/d4mh01525h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Semiconducting ternary nitrides are a promising class of materials that have received increasing attention in recent years, but often show high free electron concentrations due to the low defect formation energies of nitrogen vacancies and substitutional oxygen, leading to degenerate n-type doping. To achieve non-degenerate behavior, we now investigate a family of amorphous calcium-zinc nitride (Ca-Zn-N) thin films. By adjusting the metal cation ratios, we demonstrate band gap tunability between 1.4 and 2.0 eV and control over the charge carrier concentration across six orders of magnitude, all while maintaining high mobilities between 5 and 70 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>. The combination of favorable electronic properties, low synthesis temperatures, and earth-abundant elements makes amorphous Ca-Zn-N highly promising for future sustainable electronics. Moreover, the successful synthesis of such materials, as well as their broad optical and electrical tunability, paves the way for a new class of tailored functional materials: amorphous nitride semiconductors - ANSs.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667462/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01525h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01525h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

半导体三元氮化物是近年来备受关注的一类有前途的材料,但由于氮空位和取代氧的低缺陷形成能,往往表现出较高的自由电子浓度,导致简并n型掺杂。为了实现非简并行为,我们现在研究了一类无定形氮化钙锌(Ca-Zn-N)薄膜。通过调整金属阳离子比例,我们证明了带隙在1.4和2.0 eV之间的可调性,以及对六个数量级的电荷载流子浓度的控制,同时保持了5到70 cm2 V-1 s-1之间的高迁移率。良好的电子性能、较低的合成温度和地球上丰富的元素使无定形的Ca-Zn-N在未来的可持续电子产品中非常有前途。此外,这种材料的成功合成,以及它们广泛的光学和电学可调性,为一种新的定制功能材料铺平了道路:非晶氮化物半导体- ANSs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amorphous nitride semiconductors with highly tunable optical and electronic properties: the benefits of disorder in Ca-Zn-N thin films.

Semiconducting ternary nitrides are a promising class of materials that have received increasing attention in recent years, but often show high free electron concentrations due to the low defect formation energies of nitrogen vacancies and substitutional oxygen, leading to degenerate n-type doping. To achieve non-degenerate behavior, we now investigate a family of amorphous calcium-zinc nitride (Ca-Zn-N) thin films. By adjusting the metal cation ratios, we demonstrate band gap tunability between 1.4 and 2.0 eV and control over the charge carrier concentration across six orders of magnitude, all while maintaining high mobilities between 5 and 70 cm2 V-1 s-1. The combination of favorable electronic properties, low synthesis temperatures, and earth-abundant elements makes amorphous Ca-Zn-N highly promising for future sustainable electronics. Moreover, the successful synthesis of such materials, as well as their broad optical and electrical tunability, paves the way for a new class of tailored functional materials: amorphous nitride semiconductors - ANSs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信