Kevin D Roehm, Irene Chiesa, Dustin Haithcock, Riccardo Gottardi, Balabhaskar Prabhakarpandian
{"title":"用于炎症反应建模和治疗筛选的骨软骨单元血管化微流体模型。","authors":"Kevin D Roehm, Irene Chiesa, Dustin Haithcock, Riccardo Gottardi, Balabhaskar Prabhakarpandian","doi":"10.1039/d4lc00651h","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) has long been considered a disease of the articular cartilage. Within the past decade it has become increasingly clear that OA is a disease of the entire joint space and that interactions between articular cartilage and subchondral bone likely play an important role in the disease. Driven by this knowledge, we have created a novel microphysiological model of the osteochondral unit containing synovium, cartilage, bone, and vasculature in separate compartments with molecular and direct cell-cell interaction between the cells from the different tissue types. We have characterized the model in terms of differentiation by molecule and matrix secretion and shown that it demonstrates morphology and functionality that mimic the native characteristic of the joint space. Finally, we induced inflammation and subsequently rescued the model constructs by a known compound as proof of concept for anti-inflammatory drug screening applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":"370-382"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A vascularized microfluidic model of the osteochondral unit for modeling inflammatory response and therapeutic screening.\",\"authors\":\"Kevin D Roehm, Irene Chiesa, Dustin Haithcock, Riccardo Gottardi, Balabhaskar Prabhakarpandian\",\"doi\":\"10.1039/d4lc00651h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA) has long been considered a disease of the articular cartilage. Within the past decade it has become increasingly clear that OA is a disease of the entire joint space and that interactions between articular cartilage and subchondral bone likely play an important role in the disease. Driven by this knowledge, we have created a novel microphysiological model of the osteochondral unit containing synovium, cartilage, bone, and vasculature in separate compartments with molecular and direct cell-cell interaction between the cells from the different tissue types. We have characterized the model in terms of differentiation by molecule and matrix secretion and shown that it demonstrates morphology and functionality that mimic the native characteristic of the joint space. Finally, we induced inflammation and subsequently rescued the model constructs by a known compound as proof of concept for anti-inflammatory drug screening applications.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" \",\"pages\":\"370-382\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d4lc00651h\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4lc00651h","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A vascularized microfluidic model of the osteochondral unit for modeling inflammatory response and therapeutic screening.
Osteoarthritis (OA) has long been considered a disease of the articular cartilage. Within the past decade it has become increasingly clear that OA is a disease of the entire joint space and that interactions between articular cartilage and subchondral bone likely play an important role in the disease. Driven by this knowledge, we have created a novel microphysiological model of the osteochondral unit containing synovium, cartilage, bone, and vasculature in separate compartments with molecular and direct cell-cell interaction between the cells from the different tissue types. We have characterized the model in terms of differentiation by molecule and matrix secretion and shown that it demonstrates morphology and functionality that mimic the native characteristic of the joint space. Finally, we induced inflammation and subsequently rescued the model constructs by a known compound as proof of concept for anti-inflammatory drug screening applications.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.