界面驱动的氮掺杂碳固定化CoNi2S4@ReS2/CC异质结构催化增强,优化碱性海水分解过程中氢和氧的释放。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanhui Lu, Zhengqiang Zhao, Xiaotong Liu, Xu Yu, Wenqiang Li, Chengang Pei, Ho Seok Park, Jung Kyu Kim, Huan Pang
{"title":"界面驱动的氮掺杂碳固定化CoNi2S4@ReS2/CC异质结构催化增强,优化碱性海水分解过程中氢和氧的释放。","authors":"Yanhui Lu,&nbsp;Zhengqiang Zhao,&nbsp;Xiaotong Liu,&nbsp;Xu Yu,&nbsp;Wenqiang Li,&nbsp;Chengang Pei,&nbsp;Ho Seok Park,&nbsp;Jung Kyu Kim,&nbsp;Huan Pang","doi":"10.1002/advs.202413245","DOIUrl":null,"url":null,"abstract":"<p>The rational design of multicomponent heterostructure is an effective strategy to enhance the catalytic activity of electrocatalysts for water and seawater electrolysis in alkaline conditions. Herein, MOF-derived nitrogen-doped carbon/nickel-cobalt sulfides coupled vertically aligned Rhenium disulfide (ReS<sub>2</sub>) on carbon cloth (NC-CoNi<sub>2</sub>S<sub>4</sub>@ReS<sub>2</sub>/CC) are constructed via hydrothermal and activation approaches. Experimental and theoretical analysis demonstrates that the strong interactions between multiple interfaces promote electron redistribution and facilitate water dissociation, thereby optimizing *H adsorption energy for the hydrogen evolution reaction (HER). Meanwhile, the adsorption energies of oxygenated intermediates are balanced to reduce the thermodynamic barrier for the oxygen evolution reaction (OER). Consequently, NC-CoNi<sub>2</sub>S<sub>4</sub>@ReS<sub>2</sub>/CC shows smaller overpotentials of 87 and 253 mV for HER and OER at 10 mA cm<sup>−2</sup>, with a lower Tafel slope and R<sub>ct</sub> than control samples. Superior catalytic stability is confirmed by cyclic voltammetry (CV) for 1000 cycles and CA test for 56 h. Furthermore, NC-CoNi<sub>2</sub>S<sub>4</sub>@ReS<sub>2</sub>/CC presents exceptional electrocatalytic activity in both alkaline water/seawater electrolytes. Stability assessments reveal that NC-CoNi<sub>2</sub>S<sub>4</sub>@ReS<sub>2</sub>/CC maintains a highly catalytic activity in both water and seawater, owing to the corrosion-resistant properties of the sulfur species at the interface. These findings highlight the importance of designing heterostructure electrocatalysts for clean hydrogen production.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 7","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202413245","citationCount":"0","resultStr":"{\"title\":\"Interface-Driven Catalytic Enhancements in Nitrogen-Doped Carbon Immobilized CoNi2S4@ReS2/CC Heterostructures for Optimized Hydrogen and Oxygen Evolution in Alkaline Seawater-Splitting\",\"authors\":\"Yanhui Lu,&nbsp;Zhengqiang Zhao,&nbsp;Xiaotong Liu,&nbsp;Xu Yu,&nbsp;Wenqiang Li,&nbsp;Chengang Pei,&nbsp;Ho Seok Park,&nbsp;Jung Kyu Kim,&nbsp;Huan Pang\",\"doi\":\"10.1002/advs.202413245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rational design of multicomponent heterostructure is an effective strategy to enhance the catalytic activity of electrocatalysts for water and seawater electrolysis in alkaline conditions. Herein, MOF-derived nitrogen-doped carbon/nickel-cobalt sulfides coupled vertically aligned Rhenium disulfide (ReS<sub>2</sub>) on carbon cloth (NC-CoNi<sub>2</sub>S<sub>4</sub>@ReS<sub>2</sub>/CC) are constructed via hydrothermal and activation approaches. Experimental and theoretical analysis demonstrates that the strong interactions between multiple interfaces promote electron redistribution and facilitate water dissociation, thereby optimizing *H adsorption energy for the hydrogen evolution reaction (HER). Meanwhile, the adsorption energies of oxygenated intermediates are balanced to reduce the thermodynamic barrier for the oxygen evolution reaction (OER). Consequently, NC-CoNi<sub>2</sub>S<sub>4</sub>@ReS<sub>2</sub>/CC shows smaller overpotentials of 87 and 253 mV for HER and OER at 10 mA cm<sup>−2</sup>, with a lower Tafel slope and R<sub>ct</sub> than control samples. Superior catalytic stability is confirmed by cyclic voltammetry (CV) for 1000 cycles and CA test for 56 h. Furthermore, NC-CoNi<sub>2</sub>S<sub>4</sub>@ReS<sub>2</sub>/CC presents exceptional electrocatalytic activity in both alkaline water/seawater electrolytes. Stability assessments reveal that NC-CoNi<sub>2</sub>S<sub>4</sub>@ReS<sub>2</sub>/CC maintains a highly catalytic activity in both water and seawater, owing to the corrosion-resistant properties of the sulfur species at the interface. These findings highlight the importance of designing heterostructure electrocatalysts for clean hydrogen production.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 7\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202413245\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202413245\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202413245","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合理设计多组分异质结构是提高电催化剂在碱性条件下对水和海水电解催化活性的有效策略。本文通过水热法和活化法在碳布(NC-CoNi2S4@ReS2/CC)上构建了mof衍生的氮掺杂碳/镍钴硫化物与垂直排列的二硫化铼(ReS2)耦合。实验和理论分析表明,多界面之间的强相互作用促进了电子重分布,促进了水的解离,从而优化了析氢反应(HER)的*H吸附能。同时,对含氧中间体的吸附能进行了平衡,降低了析氧反应的热力学障碍。因此,NC-CoNi2S4@ReS2/CC显示HER和OER在10 mA cm-2下的过电位较小,分别为87和253 mV, Tafel斜率和Rct低于对照样品。通过1000次循环伏安法(CV)和56 h的CA测试,证实了优越的催化稳定性。此外,NC-CoNi2S4@ReS2/CC在碱性水/海水电解质中都表现出优异的电催化活性。稳定性评估表明,NC-CoNi2S4@ReS2/CC在水和海水中都保持了很高的催化活性,这是由于界面处的硫种具有耐腐蚀性。这些发现强调了设计异质结构电催化剂用于清洁制氢的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interface-Driven Catalytic Enhancements in Nitrogen-Doped Carbon Immobilized CoNi2S4@ReS2/CC Heterostructures for Optimized Hydrogen and Oxygen Evolution in Alkaline Seawater-Splitting

Interface-Driven Catalytic Enhancements in Nitrogen-Doped Carbon Immobilized CoNi2S4@ReS2/CC Heterostructures for Optimized Hydrogen and Oxygen Evolution in Alkaline Seawater-Splitting

The rational design of multicomponent heterostructure is an effective strategy to enhance the catalytic activity of electrocatalysts for water and seawater electrolysis in alkaline conditions. Herein, MOF-derived nitrogen-doped carbon/nickel-cobalt sulfides coupled vertically aligned Rhenium disulfide (ReS2) on carbon cloth (NC-CoNi2S4@ReS2/CC) are constructed via hydrothermal and activation approaches. Experimental and theoretical analysis demonstrates that the strong interactions between multiple interfaces promote electron redistribution and facilitate water dissociation, thereby optimizing *H adsorption energy for the hydrogen evolution reaction (HER). Meanwhile, the adsorption energies of oxygenated intermediates are balanced to reduce the thermodynamic barrier for the oxygen evolution reaction (OER). Consequently, NC-CoNi2S4@ReS2/CC shows smaller overpotentials of 87 and 253 mV for HER and OER at 10 mA cm−2, with a lower Tafel slope and Rct than control samples. Superior catalytic stability is confirmed by cyclic voltammetry (CV) for 1000 cycles and CA test for 56 h. Furthermore, NC-CoNi2S4@ReS2/CC presents exceptional electrocatalytic activity in both alkaline water/seawater electrolytes. Stability assessments reveal that NC-CoNi2S4@ReS2/CC maintains a highly catalytic activity in both water and seawater, owing to the corrosion-resistant properties of the sulfur species at the interface. These findings highlight the importance of designing heterostructure electrocatalysts for clean hydrogen production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信