{"title":"猪流行性腹泻病毒的抗病毒作用。","authors":"Nopporn Chutiwitoonchai, Radeekorn Akkarawongsapat, Suphat Chantawarin, Chutima Jiarpinitnun, Benjamas Liwnaree, Samaporn Teeravechyan, Sunhapas Soodvilai","doi":"10.1016/j.antiviral.2024.106073","DOIUrl":null,"url":null,"abstract":"<p><p>Global swine industry has long been severely affected by the periodic outbreaks of porcine epidemic diarrhea (PED), a deadly infectious disease in piglets caused by the porcine epidemic diarrhea virus (PEDV). Currently, available vaccines and antiviral drugs could not provide effective prevention and treatment of PEDV infection in pigs. In this study, Boesenbergia rotunda (B. rotunda) extract and its major bioactive flavonoid, pinostrobin, were demonstrated to exhibit remarkable anti-PEDV activities with EC<sub>50</sub> values of 0.33 ± 0.02 μg/ml and 2.71 ± 0.12 μM, and selectivity indices (SI) of 11.93 and > 184.55, respectively. Results based on a time-of-addition assay showed that pinostrobin blocked PEDV infection mainly at the early stages of infection. More specifically, pinostrobin reduced cell-cell fusion mediated by the viral spike protein, suggesting that the compound may target the virus fusion step. We also synthesized pinostrobin derivatives and explored the impact of pinostrobin structural features to the observed anti-PEDV activity. Results indicated the importance of the hydroxyl group and substituent on the phenyl ring. In summary, this study highlights the potential of B. rotunda extract and its bioactive compound, pinostrobin, as candidates for the development of antiviral drugs to more effectively control PEDV infection.</p>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":" ","pages":"106073"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiviral effect of pinostrobin, a bioactive constituent of Boesenbergia rotunda, against porcine epidemic diarrhea virus.\",\"authors\":\"Nopporn Chutiwitoonchai, Radeekorn Akkarawongsapat, Suphat Chantawarin, Chutima Jiarpinitnun, Benjamas Liwnaree, Samaporn Teeravechyan, Sunhapas Soodvilai\",\"doi\":\"10.1016/j.antiviral.2024.106073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global swine industry has long been severely affected by the periodic outbreaks of porcine epidemic diarrhea (PED), a deadly infectious disease in piglets caused by the porcine epidemic diarrhea virus (PEDV). Currently, available vaccines and antiviral drugs could not provide effective prevention and treatment of PEDV infection in pigs. In this study, Boesenbergia rotunda (B. rotunda) extract and its major bioactive flavonoid, pinostrobin, were demonstrated to exhibit remarkable anti-PEDV activities with EC<sub>50</sub> values of 0.33 ± 0.02 μg/ml and 2.71 ± 0.12 μM, and selectivity indices (SI) of 11.93 and > 184.55, respectively. Results based on a time-of-addition assay showed that pinostrobin blocked PEDV infection mainly at the early stages of infection. More specifically, pinostrobin reduced cell-cell fusion mediated by the viral spike protein, suggesting that the compound may target the virus fusion step. We also synthesized pinostrobin derivatives and explored the impact of pinostrobin structural features to the observed anti-PEDV activity. Results indicated the importance of the hydroxyl group and substituent on the phenyl ring. In summary, this study highlights the potential of B. rotunda extract and its bioactive compound, pinostrobin, as candidates for the development of antiviral drugs to more effectively control PEDV infection.</p>\",\"PeriodicalId\":8259,\"journal\":{\"name\":\"Antiviral research\",\"volume\":\" \",\"pages\":\"106073\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.antiviral.2024.106073\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.antiviral.2024.106073","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Antiviral effect of pinostrobin, a bioactive constituent of Boesenbergia rotunda, against porcine epidemic diarrhea virus.
Global swine industry has long been severely affected by the periodic outbreaks of porcine epidemic diarrhea (PED), a deadly infectious disease in piglets caused by the porcine epidemic diarrhea virus (PEDV). Currently, available vaccines and antiviral drugs could not provide effective prevention and treatment of PEDV infection in pigs. In this study, Boesenbergia rotunda (B. rotunda) extract and its major bioactive flavonoid, pinostrobin, were demonstrated to exhibit remarkable anti-PEDV activities with EC50 values of 0.33 ± 0.02 μg/ml and 2.71 ± 0.12 μM, and selectivity indices (SI) of 11.93 and > 184.55, respectively. Results based on a time-of-addition assay showed that pinostrobin blocked PEDV infection mainly at the early stages of infection. More specifically, pinostrobin reduced cell-cell fusion mediated by the viral spike protein, suggesting that the compound may target the virus fusion step. We also synthesized pinostrobin derivatives and explored the impact of pinostrobin structural features to the observed anti-PEDV activity. Results indicated the importance of the hydroxyl group and substituent on the phenyl ring. In summary, this study highlights the potential of B. rotunda extract and its bioactive compound, pinostrobin, as candidates for the development of antiviral drugs to more effectively control PEDV infection.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.