{"title":"柱形对非接触DEP微流控装置中细胞分离的影响","authors":"Mohsen Mashhadi Keshtiban, Peyman Torky Harchegani, Mahdi Moghimi Zand, Zahra Azizi","doi":"10.1007/s10404-024-02772-6","DOIUrl":null,"url":null,"abstract":"<div><p>Contactless dielectrophoresis is an effective method for trapping and manipulating cells in microfluidic devices. However, the efficiency of these devices decreases at higher flow rates. To address the limitation of previous studies, a new pillar shape is introduced and numerically simulated to isolate THP-1 cells and efficiently separate them from red blood cells (RBCs). A comparison is made in two microchannels with the novel pillar shape of two perpendicular ellipses and the circular pillar shape as the reference case. Simulation results demonstrate that the use of two perpendicular ellipticals pillar shape improves the electric characteristics of the device, showing 92.7% higher <span>\\(\\nabla {E}_{rms}^{2}\\)</span> compared to the channel with circular pillars. The working frequency is selected based on the CM factor to isolate THP-1 cells without affecting RBCs. Additionally, the new pillar configuration exhibited 116% higher cell trap efficiency compared to the chip with circular pillars.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of pillar shapes on the cell isolation in contactless DEP microfluidic devices\",\"authors\":\"Mohsen Mashhadi Keshtiban, Peyman Torky Harchegani, Mahdi Moghimi Zand, Zahra Azizi\",\"doi\":\"10.1007/s10404-024-02772-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Contactless dielectrophoresis is an effective method for trapping and manipulating cells in microfluidic devices. However, the efficiency of these devices decreases at higher flow rates. To address the limitation of previous studies, a new pillar shape is introduced and numerically simulated to isolate THP-1 cells and efficiently separate them from red blood cells (RBCs). A comparison is made in two microchannels with the novel pillar shape of two perpendicular ellipses and the circular pillar shape as the reference case. Simulation results demonstrate that the use of two perpendicular ellipticals pillar shape improves the electric characteristics of the device, showing 92.7% higher <span>\\\\(\\\\nabla {E}_{rms}^{2}\\\\)</span> compared to the channel with circular pillars. The working frequency is selected based on the CM factor to isolate THP-1 cells without affecting RBCs. Additionally, the new pillar configuration exhibited 116% higher cell trap efficiency compared to the chip with circular pillars.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"29 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02772-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02772-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
摘要
在微流体装置中,非接触介质电泳是捕获和操纵细胞的有效方法。然而,这些装置的效率在较高的流量下会下降。为了解决以往研究的局限性,本文引入了一种新的柱形,并对其进行了数值模拟,以分离THP-1细胞,并有效地将其从红细胞(rbc)中分离出来。在两个微通道中,以两个垂直椭圆的新型柱形和圆形柱形作为参考情况进行了比较。仿真结果表明,采用两个垂直的椭圆柱形改善了器件的电特性,达到92.7% higher \(\nabla {E}_{rms}^{2}\) compared to the channel with circular pillars. The working frequency is selected based on the CM factor to isolate THP-1 cells without affecting RBCs. Additionally, the new pillar configuration exhibited 116% higher cell trap efficiency compared to the chip with circular pillars.
Effects of pillar shapes on the cell isolation in contactless DEP microfluidic devices
Contactless dielectrophoresis is an effective method for trapping and manipulating cells in microfluidic devices. However, the efficiency of these devices decreases at higher flow rates. To address the limitation of previous studies, a new pillar shape is introduced and numerically simulated to isolate THP-1 cells and efficiently separate them from red blood cells (RBCs). A comparison is made in two microchannels with the novel pillar shape of two perpendicular ellipses and the circular pillar shape as the reference case. Simulation results demonstrate that the use of two perpendicular ellipticals pillar shape improves the electric characteristics of the device, showing 92.7% higher \(\nabla {E}_{rms}^{2}\) compared to the channel with circular pillars. The working frequency is selected based on the CM factor to isolate THP-1 cells without affecting RBCs. Additionally, the new pillar configuration exhibited 116% higher cell trap efficiency compared to the chip with circular pillars.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).