{"title":"Sr2TiMoO6-Al2O3伪二元复合材料作为一种新型吸波材料","authors":"Peng Wu, Jun Wang, Jian-Yu Li, Jing Feng, Wen-Ting He, Hong-Bo Guo","doi":"10.1007/s12598-024-03013-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a novel microwave absorbing material (MAM) made of a pseudo-binary of Sr<sub>2</sub>TiMoO<sub>6</sub>–Al<sub>2</sub>O<sub>3</sub> (STM) is proposed first. The MAMs labeled as STM <i>X</i> (<i>X</i> = 60, 70, 80 and 100, respectively), in which <i>X</i> is the initial weight percent of Sr<sub>2</sub>TiMoO<sub>6</sub>, were synthesized using the solid-state reaction method. Compared with STM100, some equilibrium phases, including SrTiO<sub>3</sub>, Mo, Sr<sub>8</sub>(Al<sub>12</sub>O<sub>24</sub>)(MoO<sub>4</sub>)<sub>2</sub> and a few undefined ones, are presented in the composites as evidenced by X-ray diffraction results and scanning electron microscopy due to the chemical reaction between Sr<sub>2</sub>TiMoO<sub>6</sub> and Al<sub>2</sub>O<sub>3</sub> component. Besides conductance loss, heterogeneous interfaces between various equilibrium phases introduce interfacial polarization, which causes an enhancement of dissipation for the incident electromagnetic wave. Among the synthesized samples, STM80 presents the best microwave absorbing properties. It has a minimum reflection loss (RL<sub>min</sub>) of − 26 dB and an effective absorbing bandwidth up to 2.7 GHz when the thickness is only 1 mm. This indicates that STM80 is a new type of microwave absorbing material with strong absorption and ultrathin thickness.</p></div>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":"44 1","pages":"503 - 514"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudo-binary composite of Sr2TiMoO6–Al2O3 as a novel microwave absorbing material\",\"authors\":\"Peng Wu, Jun Wang, Jian-Yu Li, Jing Feng, Wen-Ting He, Hong-Bo Guo\",\"doi\":\"10.1007/s12598-024-03013-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, a novel microwave absorbing material (MAM) made of a pseudo-binary of Sr<sub>2</sub>TiMoO<sub>6</sub>–Al<sub>2</sub>O<sub>3</sub> (STM) is proposed first. The MAMs labeled as STM <i>X</i> (<i>X</i> = 60, 70, 80 and 100, respectively), in which <i>X</i> is the initial weight percent of Sr<sub>2</sub>TiMoO<sub>6</sub>, were synthesized using the solid-state reaction method. Compared with STM100, some equilibrium phases, including SrTiO<sub>3</sub>, Mo, Sr<sub>8</sub>(Al<sub>12</sub>O<sub>24</sub>)(MoO<sub>4</sub>)<sub>2</sub> and a few undefined ones, are presented in the composites as evidenced by X-ray diffraction results and scanning electron microscopy due to the chemical reaction between Sr<sub>2</sub>TiMoO<sub>6</sub> and Al<sub>2</sub>O<sub>3</sub> component. Besides conductance loss, heterogeneous interfaces between various equilibrium phases introduce interfacial polarization, which causes an enhancement of dissipation for the incident electromagnetic wave. Among the synthesized samples, STM80 presents the best microwave absorbing properties. It has a minimum reflection loss (RL<sub>min</sub>) of − 26 dB and an effective absorbing bandwidth up to 2.7 GHz when the thickness is only 1 mm. This indicates that STM80 is a new type of microwave absorbing material with strong absorption and ultrathin thickness.</p></div>\",\"PeriodicalId\":749,\"journal\":{\"name\":\"Rare Metals\",\"volume\":\"44 1\",\"pages\":\"503 - 514\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rare Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12598-024-03013-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12598-024-03013-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文首次提出了一种由Sr2TiMoO6-Al2O3 (STM)伪二元材料制成的新型微波吸收材料(MAM)。采用固相反应法合成了标记为STM X (X分别= 60、70、80和100)的MAMs,其中X为Sr2TiMoO6的初始质量百分比。与STM100相比,x射线衍射和扫描电镜结果表明,由于Sr2TiMoO6和Al2O3组分之间的化学反应,复合材料中出现了SrTiO3、Mo、Sr8(Al12O24)(MoO4)2和一些未定义的平衡相。除了电导损失外,各平衡相之间的非均匀界面还会引入界面极化,使入射电磁波的耗散增强。在所合成的样品中,STM80具有最好的微波吸收性能。当厚度仅为1mm时,其最小反射损耗(RLmin)为−26 dB,有效吸收带宽高达2.7 GHz。这表明STM80是一种吸波强、厚度超薄的新型吸波材料。
Pseudo-binary composite of Sr2TiMoO6–Al2O3 as a novel microwave absorbing material
In this work, a novel microwave absorbing material (MAM) made of a pseudo-binary of Sr2TiMoO6–Al2O3 (STM) is proposed first. The MAMs labeled as STM X (X = 60, 70, 80 and 100, respectively), in which X is the initial weight percent of Sr2TiMoO6, were synthesized using the solid-state reaction method. Compared with STM100, some equilibrium phases, including SrTiO3, Mo, Sr8(Al12O24)(MoO4)2 and a few undefined ones, are presented in the composites as evidenced by X-ray diffraction results and scanning electron microscopy due to the chemical reaction between Sr2TiMoO6 and Al2O3 component. Besides conductance loss, heterogeneous interfaces between various equilibrium phases introduce interfacial polarization, which causes an enhancement of dissipation for the incident electromagnetic wave. Among the synthesized samples, STM80 presents the best microwave absorbing properties. It has a minimum reflection loss (RLmin) of − 26 dB and an effective absorbing bandwidth up to 2.7 GHz when the thickness is only 1 mm. This indicates that STM80 is a new type of microwave absorbing material with strong absorption and ultrathin thickness.
期刊介绍:
Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.