近端梯度动力学:单调性、指数收敛性及其应用

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Anand Gokhale;Alexander Davydov;Francesco Bullo
{"title":"近端梯度动力学:单调性、指数收敛性及其应用","authors":"Anand Gokhale;Alexander Davydov;Francesco Bullo","doi":"10.1109/LCSYS.2024.3516632","DOIUrl":null,"url":null,"abstract":"In this letter we study the proximal gradient dynamics. This recently-proposed continuous-time dynamics solves optimization problems whose cost functions are separable into a nonsmooth convex and a smooth component. First, we show that the cost function decreases monotonically along the trajectories of the proximal gradient dynamics. We then introduce a new condition that guarantees exponential convergence of the cost function to its optimal value, and show that this condition implies the proximal Polyak-Łojasiewicz condition. We also show that the proximal Polyak-Łojasiewicz condition guarantees exponential convergence of the cost function. Moreover, we extend these results to time-varying optimization problems, providing bounds for equilibrium tracking. Finally, we discuss applications of these findings, including the LASSO problem, certain matrix based problems and a numerical experiment on a feed-forward neural network.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2853-2858"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proximal Gradient Dynamics: Monotonicity, Exponential Convergence, and Applications\",\"authors\":\"Anand Gokhale;Alexander Davydov;Francesco Bullo\",\"doi\":\"10.1109/LCSYS.2024.3516632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter we study the proximal gradient dynamics. This recently-proposed continuous-time dynamics solves optimization problems whose cost functions are separable into a nonsmooth convex and a smooth component. First, we show that the cost function decreases monotonically along the trajectories of the proximal gradient dynamics. We then introduce a new condition that guarantees exponential convergence of the cost function to its optimal value, and show that this condition implies the proximal Polyak-Łojasiewicz condition. We also show that the proximal Polyak-Łojasiewicz condition guarantees exponential convergence of the cost function. Moreover, we extend these results to time-varying optimization problems, providing bounds for equilibrium tracking. Finally, we discuss applications of these findings, including the LASSO problem, certain matrix based problems and a numerical experiment on a feed-forward neural network.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"8 \",\"pages\":\"2853-2858\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10794666/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10794666/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们研究了近端梯度动力学。最近提出的连续时间动力学解决了成本函数可分为非光滑凸和光滑分量的优化问题。首先,我们证明了代价函数沿近端梯度动力学轨迹单调递减。然后,我们引入了一个保证代价函数指数收敛到其最优值的新条件,并证明了该条件隐含了近端Polyak-Łojasiewicz条件。我们还证明了近端Polyak-Łojasiewicz条件保证了代价函数的指数收敛。此外,我们将这些结果推广到时变优化问题,提供了平衡跟踪的界。最后,我们讨论了这些发现的应用,包括LASSO问题,某些基于矩阵的问题和前馈神经网络的数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proximal Gradient Dynamics: Monotonicity, Exponential Convergence, and Applications
In this letter we study the proximal gradient dynamics. This recently-proposed continuous-time dynamics solves optimization problems whose cost functions are separable into a nonsmooth convex and a smooth component. First, we show that the cost function decreases monotonically along the trajectories of the proximal gradient dynamics. We then introduce a new condition that guarantees exponential convergence of the cost function to its optimal value, and show that this condition implies the proximal Polyak-Łojasiewicz condition. We also show that the proximal Polyak-Łojasiewicz condition guarantees exponential convergence of the cost function. Moreover, we extend these results to time-varying optimization problems, providing bounds for equilibrium tracking. Finally, we discuss applications of these findings, including the LASSO problem, certain matrix based problems and a numerical experiment on a feed-forward neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信