基于稀疏数据集的光伏系统性能预测的分层时间序列方法

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS
Edris Khorani;Sophie L. Pain;Tim Niewelt;Ruy S. Bonilla;Tasmiat Rahman;Nicholas E. Grant;John D. Murphy
{"title":"基于稀疏数据集的光伏系统性能预测的分层时间序列方法","authors":"Edris Khorani;Sophie L. Pain;Tim Niewelt;Ruy S. Bonilla;Tasmiat Rahman;Nicholas E. Grant;John D. Murphy","doi":"10.1109/JPHOTOV.2024.3472222","DOIUrl":null,"url":null,"abstract":"Solar-based power generation presents challenges for system and grid operators due to the intermittent nature of power supply. Predicting the performance of photovoltaic (PV) power plants and rooftop systems can often be challenging due to difficulties in data collection and incoherencies in interconnected systems. Following the hierarchical aggregation structure from geographical and temporal similarities between PV systems, we suggest a simplified approach to predicting the performance of individual installations and evaluating the impact of these hypothetical installations on the overall grid. We use the hierarchical nature of power generation and ascertain weather datasets to predict the performance of new or existing systems for locations with unmeasured input data. We demonstrate an approach that could improve grid stability by using a hierarchical model on publicly available datasets on utility and rooftop installations. Ensemble machine learning algorithms are trained with 16 weeks of known hourly input training features to form a baseline model for known locations. The prediction accuracy is then directly compared for locations with known and unknown input features, both on a granular and subregion level. We observe a reduction in prediction accuracy by 6–8% using the hierarchical approach. The accuracy of the hierarchical model can be further enhanced beyond our work by increasing the training dataset temporally, as well as by augmenting nested layers of the hierarchy.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 1","pages":"173-180"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Time-Series Approaches for Photovoltaic System Performance Forecasting With Sparse Datasets\",\"authors\":\"Edris Khorani;Sophie L. Pain;Tim Niewelt;Ruy S. Bonilla;Tasmiat Rahman;Nicholas E. Grant;John D. Murphy\",\"doi\":\"10.1109/JPHOTOV.2024.3472222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar-based power generation presents challenges for system and grid operators due to the intermittent nature of power supply. Predicting the performance of photovoltaic (PV) power plants and rooftop systems can often be challenging due to difficulties in data collection and incoherencies in interconnected systems. Following the hierarchical aggregation structure from geographical and temporal similarities between PV systems, we suggest a simplified approach to predicting the performance of individual installations and evaluating the impact of these hypothetical installations on the overall grid. We use the hierarchical nature of power generation and ascertain weather datasets to predict the performance of new or existing systems for locations with unmeasured input data. We demonstrate an approach that could improve grid stability by using a hierarchical model on publicly available datasets on utility and rooftop installations. Ensemble machine learning algorithms are trained with 16 weeks of known hourly input training features to form a baseline model for known locations. The prediction accuracy is then directly compared for locations with known and unknown input features, both on a granular and subregion level. We observe a reduction in prediction accuracy by 6–8% using the hierarchical approach. The accuracy of the hierarchical model can be further enhanced beyond our work by increasing the training dataset temporally, as well as by augmenting nested layers of the hierarchy.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"15 1\",\"pages\":\"173-180\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10735343/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10735343/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

由于电力供应的间歇性,太阳能发电给系统和电网运营商带来了挑战。由于数据收集困难和互联系统的不一致性,预测光伏(PV)发电厂和屋顶系统的性能通常具有挑战性。根据光伏系统之间的地理和时间相似性的分层聚合结构,我们提出了一种简化的方法来预测单个装置的性能并评估这些假设装置对整个电网的影响。我们利用发电的分层性质和确定天气数据集来预测新系统或现有系统在未测量输入数据位置的性能。我们展示了一种方法,可以通过在公用事业和屋顶安装的公开可用数据集上使用分层模型来提高电网稳定性。集成机器学习算法使用16周已知的每小时输入训练特征进行训练,以形成已知位置的基线模型。然后在颗粒级和子区域级直接比较具有已知和未知输入特征的位置的预测精度。我们观察到使用分层方法预测精度降低了6-8%。通过暂时增加训练数据集,以及通过增加层次结构的嵌套层,可以进一步提高层次模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Time-Series Approaches for Photovoltaic System Performance Forecasting With Sparse Datasets
Solar-based power generation presents challenges for system and grid operators due to the intermittent nature of power supply. Predicting the performance of photovoltaic (PV) power plants and rooftop systems can often be challenging due to difficulties in data collection and incoherencies in interconnected systems. Following the hierarchical aggregation structure from geographical and temporal similarities between PV systems, we suggest a simplified approach to predicting the performance of individual installations and evaluating the impact of these hypothetical installations on the overall grid. We use the hierarchical nature of power generation and ascertain weather datasets to predict the performance of new or existing systems for locations with unmeasured input data. We demonstrate an approach that could improve grid stability by using a hierarchical model on publicly available datasets on utility and rooftop installations. Ensemble machine learning algorithms are trained with 16 weeks of known hourly input training features to form a baseline model for known locations. The prediction accuracy is then directly compared for locations with known and unknown input features, both on a granular and subregion level. We observe a reduction in prediction accuracy by 6–8% using the hierarchical approach. The accuracy of the hierarchical model can be further enhanced beyond our work by increasing the training dataset temporally, as well as by augmenting nested layers of the hierarchy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信