{"title":"ResAG-UNet:一种用于天空图像云分割的残余注意门控UNet","authors":"Anil Kumar;Yashwant Kashyap;Praveen Divakar","doi":"10.1109/JPHOTOV.2024.3485188","DOIUrl":null,"url":null,"abstract":"Cloud cover significantly impacts the solar radiation reaching the Earth's surface, thereby influencing the efficiency and output of solar energy systems. Consequently, an accurate cloud segmentation approach is crucial for understanding fluctuations in solar irradiance in real time and future ahead. Such understanding aids in optimizing energy production and grid management. In this article, we designed a novel deep learning architecture called Residual Attention Gated-UNet (ResAG-UNet) for accurate cloud segmentation. The proposed ResAG-UNet integrates residual blocks in both the encoder and decoder paths, along with an attention mechanism in the decoder path. The inclusion of residual blocks facilitates faster gradient movement due to skip pathways across them, thereby enhancing training efficiency. Furthermore, the incorporation of an attention module in ResAG-UNet allows for the learning of attention coefficients for various pixels. This mechanism actively highlights crucial characteristics while suppressing less significant ones in the cloud image. The proposed ResAG-UNet model is assessed and compared with benchmark segmentation models using NITK and SWIMSEG sky datasets. The proposed approach yields mean IOU, precision, recall, F1 score, accuracy of (0.8616, 0.8826), (0.9761,0.9965), (0.9863,0.9764), (0.9237,0.9613), and (0.9424, 0.9651) on the NITK and SWIMSEG sky datasets, respectively.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 1","pages":"181-190"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ResAG-UNet: A Novel Residual Attention Gated UNet for Cloud Segmentation in Sky Image\",\"authors\":\"Anil Kumar;Yashwant Kashyap;Praveen Divakar\",\"doi\":\"10.1109/JPHOTOV.2024.3485188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud cover significantly impacts the solar radiation reaching the Earth's surface, thereby influencing the efficiency and output of solar energy systems. Consequently, an accurate cloud segmentation approach is crucial for understanding fluctuations in solar irradiance in real time and future ahead. Such understanding aids in optimizing energy production and grid management. In this article, we designed a novel deep learning architecture called Residual Attention Gated-UNet (ResAG-UNet) for accurate cloud segmentation. The proposed ResAG-UNet integrates residual blocks in both the encoder and decoder paths, along with an attention mechanism in the decoder path. The inclusion of residual blocks facilitates faster gradient movement due to skip pathways across them, thereby enhancing training efficiency. Furthermore, the incorporation of an attention module in ResAG-UNet allows for the learning of attention coefficients for various pixels. This mechanism actively highlights crucial characteristics while suppressing less significant ones in the cloud image. The proposed ResAG-UNet model is assessed and compared with benchmark segmentation models using NITK and SWIMSEG sky datasets. The proposed approach yields mean IOU, precision, recall, F1 score, accuracy of (0.8616, 0.8826), (0.9761,0.9965), (0.9863,0.9764), (0.9237,0.9613), and (0.9424, 0.9651) on the NITK and SWIMSEG sky datasets, respectively.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"15 1\",\"pages\":\"181-190\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10749981/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10749981/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
ResAG-UNet: A Novel Residual Attention Gated UNet for Cloud Segmentation in Sky Image
Cloud cover significantly impacts the solar radiation reaching the Earth's surface, thereby influencing the efficiency and output of solar energy systems. Consequently, an accurate cloud segmentation approach is crucial for understanding fluctuations in solar irradiance in real time and future ahead. Such understanding aids in optimizing energy production and grid management. In this article, we designed a novel deep learning architecture called Residual Attention Gated-UNet (ResAG-UNet) for accurate cloud segmentation. The proposed ResAG-UNet integrates residual blocks in both the encoder and decoder paths, along with an attention mechanism in the decoder path. The inclusion of residual blocks facilitates faster gradient movement due to skip pathways across them, thereby enhancing training efficiency. Furthermore, the incorporation of an attention module in ResAG-UNet allows for the learning of attention coefficients for various pixels. This mechanism actively highlights crucial characteristics while suppressing less significant ones in the cloud image. The proposed ResAG-UNet model is assessed and compared with benchmark segmentation models using NITK and SWIMSEG sky datasets. The proposed approach yields mean IOU, precision, recall, F1 score, accuracy of (0.8616, 0.8826), (0.9761,0.9965), (0.9863,0.9764), (0.9237,0.9613), and (0.9424, 0.9651) on the NITK and SWIMSEG sky datasets, respectively.
期刊介绍:
The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.