聚多巴胺对富含精氨酸肽通路复杂性的抑制作用

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-12-24 DOI:10.1002/smll.202409176
Nimisha A. Mavlankar, Anand K. Awasthi, Manas K. Pradhan, Yadu Chandran, Viswanath Balakrishnan, Aasheesh Srivastava, Asish Pal
{"title":"聚多巴胺对富含精氨酸肽通路复杂性的抑制作用","authors":"Nimisha A. Mavlankar,&nbsp;Anand K. Awasthi,&nbsp;Manas K. Pradhan,&nbsp;Yadu Chandran,&nbsp;Viswanath Balakrishnan,&nbsp;Aasheesh Srivastava,&nbsp;Asish Pal","doi":"10.1002/smll.202409176","DOIUrl":null,"url":null,"abstract":"<p>Dynamic peptide networks represent an attractive structural space of supramolecular polymers in the realm of emergent complexity. Point mutations in the peptide sequence exert profound effects over the landscapes of self-assembly with an intricate interplay among the structure-function relationships. Herein, the pathway complexity of an arginine-rich peptide is studied, <i>FmocVFFARR</i> derived by the mutation of minimalist amyloid-inspired peptide amphiphile <i>FmocVFFAKK</i>, thereby focusing on its pathway-dependent self-assembly behavior. Interestingly, an interplay of competing primary and secondary nucleation in this minimalist model presumably due to the sticky interactions of the di-arginine motifs is encountered. This furnishes transient nanosheets from on-pathway metastable nanoparticles upon pH trigger, eventually leading to nanofibers. Moreover, external cues, <i>e.g</i>., pH, and temperature convert the nanofibers in off-pathway nanoparticles. For the first time, polydopamine-based surface engineering strategy to mask the arginines is demonstrated to render permanent arrest of the dynamic, transient peptide nanostructures. Finally, such polydopamine layer over the peptide nanostructures furnishes resilience against environmental stress, while also imparting mechanical robustness to the composites. The dynamic peptide nanostructures exhibited adaptive systems capable of processing chemical information while the surface coated nanostructures open wide avenues for designing stress-resilient biomaterials.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 6","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attenuation of Pathway Complexity in Arginine-Rich Peptide with Polydopamine\",\"authors\":\"Nimisha A. Mavlankar,&nbsp;Anand K. Awasthi,&nbsp;Manas K. Pradhan,&nbsp;Yadu Chandran,&nbsp;Viswanath Balakrishnan,&nbsp;Aasheesh Srivastava,&nbsp;Asish Pal\",\"doi\":\"10.1002/smll.202409176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dynamic peptide networks represent an attractive structural space of supramolecular polymers in the realm of emergent complexity. Point mutations in the peptide sequence exert profound effects over the landscapes of self-assembly with an intricate interplay among the structure-function relationships. Herein, the pathway complexity of an arginine-rich peptide is studied, <i>FmocVFFARR</i> derived by the mutation of minimalist amyloid-inspired peptide amphiphile <i>FmocVFFAKK</i>, thereby focusing on its pathway-dependent self-assembly behavior. Interestingly, an interplay of competing primary and secondary nucleation in this minimalist model presumably due to the sticky interactions of the di-arginine motifs is encountered. This furnishes transient nanosheets from on-pathway metastable nanoparticles upon pH trigger, eventually leading to nanofibers. Moreover, external cues, <i>e.g</i>., pH, and temperature convert the nanofibers in off-pathway nanoparticles. For the first time, polydopamine-based surface engineering strategy to mask the arginines is demonstrated to render permanent arrest of the dynamic, transient peptide nanostructures. Finally, such polydopamine layer over the peptide nanostructures furnishes resilience against environmental stress, while also imparting mechanical robustness to the composites. The dynamic peptide nanostructures exhibited adaptive systems capable of processing chemical information while the surface coated nanostructures open wide avenues for designing stress-resilient biomaterials.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 6\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409176\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409176","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

动态肽网络代表了一个有吸引力的结构空间的超分子聚合物在新兴的复杂性领域。肽序列中的点突变对自组装的景观具有深远的影响,具有复杂的结构-功能关系之间的相互作用。本文研究了由极简淀粉样蛋白激发的肽两亲体FmocVFFAKK突变衍生的富含精氨酸的肽FmocVFFARR的途径复杂性,从而重点研究了其途径依赖的自组装行为。有趣的是,在这个极简模型中,可能由于二精氨酸基序的粘性相互作用,遇到了竞争性的初级和次级成核的相互作用。这在pH值触发下提供通路上亚稳纳米颗粒的瞬态纳米片,最终导致纳米纤维。此外,外部因素,如pH值和温度会将纳米纤维转化为非通路纳米颗粒。这是第一次,基于聚多巴胺的表面工程策略来掩盖精氨酸,以实现动态的、瞬态的肽纳米结构的永久捕获。最后,这种覆盖在肽纳米结构上的聚多巴胺层提供了对环境压力的弹性,同时也赋予了复合材料的机械稳健性。动态肽纳米结构展示了处理化学信息的自适应系统,而表面涂层纳米结构为设计应力弹性生物材料开辟了广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Attenuation of Pathway Complexity in Arginine-Rich Peptide with Polydopamine

Attenuation of Pathway Complexity in Arginine-Rich Peptide with Polydopamine

Dynamic peptide networks represent an attractive structural space of supramolecular polymers in the realm of emergent complexity. Point mutations in the peptide sequence exert profound effects over the landscapes of self-assembly with an intricate interplay among the structure-function relationships. Herein, the pathway complexity of an arginine-rich peptide is studied, FmocVFFARR derived by the mutation of minimalist amyloid-inspired peptide amphiphile FmocVFFAKK, thereby focusing on its pathway-dependent self-assembly behavior. Interestingly, an interplay of competing primary and secondary nucleation in this minimalist model presumably due to the sticky interactions of the di-arginine motifs is encountered. This furnishes transient nanosheets from on-pathway metastable nanoparticles upon pH trigger, eventually leading to nanofibers. Moreover, external cues, e.g., pH, and temperature convert the nanofibers in off-pathway nanoparticles. For the first time, polydopamine-based surface engineering strategy to mask the arginines is demonstrated to render permanent arrest of the dynamic, transient peptide nanostructures. Finally, such polydopamine layer over the peptide nanostructures furnishes resilience against environmental stress, while also imparting mechanical robustness to the composites. The dynamic peptide nanostructures exhibited adaptive systems capable of processing chemical information while the surface coated nanostructures open wide avenues for designing stress-resilient biomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信