Seong Soon Kim , Suhyun Kim , Yeonhwa Kim , Youngran Ha , Hyojin Lee , Hyunji Im , Jung Yoon Yang , Dae-Seop Shin , Kyu-Seok Hwang , Yuji Son , Sung Bum Park , Ki Young Kim , Han-Seul Lee , Ki-Tae Kim , Sung-Hee Cho , Myung Ae Bae , Hae-Chul Park
{"title":"犬尿氨酸转化为3-羟基犬尿氨酸所致香茅醇的神经毒性作用","authors":"Seong Soon Kim , Suhyun Kim , Yeonhwa Kim , Youngran Ha , Hyojin Lee , Hyunji Im , Jung Yoon Yang , Dae-Seop Shin , Kyu-Seok Hwang , Yuji Son , Sung Bum Park , Ki Young Kim , Han-Seul Lee , Ki-Tae Kim , Sung-Hee Cho , Myung Ae Bae , Hae-Chul Park","doi":"10.1016/j.jhazmat.2024.136965","DOIUrl":null,"url":null,"abstract":"<div><div>Citronellol is widely utilized in consumer products, including cosmetics, fragrances, and household items. However, despite being considered a relatively safe chemical, the health effects and toxicity mechanisms associated with exposure to high concentrations of citronellol, based on product content, remain inadequately understood. Here, we aimed to analyze the neurological effects of citronellol in zebrafish larvae using behavioral and histological analyses and elucidate the mechanisms underlying its neurotoxicity <em>in vivo</em>. Exposure to citronellol (2, 4 and 8 mg/L) in zebrafish larvae induced a range of neurotoxic effects, including locomotor impairments, anxiety-like behaviors, oxidative stress, an inflammatory response, and apoptosis in the brain. Additionally, citronellol exposure compromised the blood-brain barrier (BBB) integrity, permitting the infiltration of inflammatory cell into the brain. Neurotoxic effects were further sustained by increased kynurenine (KYN) metabolism to the neurotoxic metabolite 3-hydroxykynurenine (3-HK), accompanied by altered neurosteroid levels, including reduced progesterone and allopregnanolone, and elevated cortisol. Similar metabolic dysregulation was observed in mouse models following oral administration (345, 690 and 3450 mg/kg) and in human brain organoids exposed to citronellol (1, 10 and 100 μM), suggesting conserved mechanisms across species. Notably, experiments using zebrafish, mice and brain-chip systems confirmed that citronellol crosses the BBB and accumulates in the brain. Overall, we identified a novel neurotoxic pathway involving the KYN to 3-HK metabolic pathway, oxidative stress, and neuroinflammation, underscoring the potential risks of prolonged citronellol exposure.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"486 ","pages":"Article 136965"},"PeriodicalIF":11.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurotoxic effects of citronellol induced by the conversion of kynurenine to 3-hydroxykynurenine\",\"authors\":\"Seong Soon Kim , Suhyun Kim , Yeonhwa Kim , Youngran Ha , Hyojin Lee , Hyunji Im , Jung Yoon Yang , Dae-Seop Shin , Kyu-Seok Hwang , Yuji Son , Sung Bum Park , Ki Young Kim , Han-Seul Lee , Ki-Tae Kim , Sung-Hee Cho , Myung Ae Bae , Hae-Chul Park\",\"doi\":\"10.1016/j.jhazmat.2024.136965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Citronellol is widely utilized in consumer products, including cosmetics, fragrances, and household items. However, despite being considered a relatively safe chemical, the health effects and toxicity mechanisms associated with exposure to high concentrations of citronellol, based on product content, remain inadequately understood. Here, we aimed to analyze the neurological effects of citronellol in zebrafish larvae using behavioral and histological analyses and elucidate the mechanisms underlying its neurotoxicity <em>in vivo</em>. Exposure to citronellol (2, 4 and 8 mg/L) in zebrafish larvae induced a range of neurotoxic effects, including locomotor impairments, anxiety-like behaviors, oxidative stress, an inflammatory response, and apoptosis in the brain. Additionally, citronellol exposure compromised the blood-brain barrier (BBB) integrity, permitting the infiltration of inflammatory cell into the brain. Neurotoxic effects were further sustained by increased kynurenine (KYN) metabolism to the neurotoxic metabolite 3-hydroxykynurenine (3-HK), accompanied by altered neurosteroid levels, including reduced progesterone and allopregnanolone, and elevated cortisol. Similar metabolic dysregulation was observed in mouse models following oral administration (345, 690 and 3450 mg/kg) and in human brain organoids exposed to citronellol (1, 10 and 100 μM), suggesting conserved mechanisms across species. Notably, experiments using zebrafish, mice and brain-chip systems confirmed that citronellol crosses the BBB and accumulates in the brain. Overall, we identified a novel neurotoxic pathway involving the KYN to 3-HK metabolic pathway, oxidative stress, and neuroinflammation, underscoring the potential risks of prolonged citronellol exposure.</div></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"486 \",\"pages\":\"Article 136965\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389424035465\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424035465","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Neurotoxic effects of citronellol induced by the conversion of kynurenine to 3-hydroxykynurenine
Citronellol is widely utilized in consumer products, including cosmetics, fragrances, and household items. However, despite being considered a relatively safe chemical, the health effects and toxicity mechanisms associated with exposure to high concentrations of citronellol, based on product content, remain inadequately understood. Here, we aimed to analyze the neurological effects of citronellol in zebrafish larvae using behavioral and histological analyses and elucidate the mechanisms underlying its neurotoxicity in vivo. Exposure to citronellol (2, 4 and 8 mg/L) in zebrafish larvae induced a range of neurotoxic effects, including locomotor impairments, anxiety-like behaviors, oxidative stress, an inflammatory response, and apoptosis in the brain. Additionally, citronellol exposure compromised the blood-brain barrier (BBB) integrity, permitting the infiltration of inflammatory cell into the brain. Neurotoxic effects were further sustained by increased kynurenine (KYN) metabolism to the neurotoxic metabolite 3-hydroxykynurenine (3-HK), accompanied by altered neurosteroid levels, including reduced progesterone and allopregnanolone, and elevated cortisol. Similar metabolic dysregulation was observed in mouse models following oral administration (345, 690 and 3450 mg/kg) and in human brain organoids exposed to citronellol (1, 10 and 100 μM), suggesting conserved mechanisms across species. Notably, experiments using zebrafish, mice and brain-chip systems confirmed that citronellol crosses the BBB and accumulates in the brain. Overall, we identified a novel neurotoxic pathway involving the KYN to 3-HK metabolic pathway, oxidative stress, and neuroinflammation, underscoring the potential risks of prolonged citronellol exposure.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.