通过质子调控和光催化协同作用的三维多孔氮化碳从海水中高效提取铀

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-12-24 DOI:10.1002/smll.202408650
Ying Wang, Ruolan Zhao, Zhong Zhou, Yachao Xu, Peng Yu
{"title":"通过质子调控和光催化协同作用的三维多孔氮化碳从海水中高效提取铀","authors":"Ying Wang,&nbsp;Ruolan Zhao,&nbsp;Zhong Zhou,&nbsp;Yachao Xu,&nbsp;Peng Yu","doi":"10.1002/smll.202408650","DOIUrl":null,"url":null,"abstract":"<p>Extracting uranium from seawater is crucial for tapping oceanic resources vital to future energy supply. This study synthesized a novel nitrogen vacancy carbon nitride (NCN) grafted polyethyleneimine (PEI) composite material (NCNP). Experiments and molecular dynamics simulations reveal that NCNP effectively hinders the diffusion of uranyl ions (UO<sub>2</sub><sup>2+</sup>) to the NCN surface, thereby inhibiting electron transfer reactions. This is primarily achieved by the PEI layer, which repels UO<sub>2</sub><sup>2+</sup> and prevents its direct contact with the NCN surface. Water-soluble O<sub>2</sub> can still diffuse to the NCN surface for reduction reactions, ensuring the reduction performance of NCNP. The introduction of PEI enhances the proton affinity of the material. Under acidic conditions, protons (H<sup>+</sup>) bind with PEI, reducing competition between protons and uranyl ions for adsorption on the NCN surface. Under alkaline conditions, protons detach from PEI, facilitating H<sub>2</sub>O<sub>2</sub> generation and promoting uranium extraction. This dynamic proton regulation allows NCNP to perform effectively under varying pH conditions. Experimental results show that NCNP achieves a uranium extraction capacity of 498.7 mg g<sup>−1</sup> in uranium-spiked simulated seawater, which is significantly higher than that of unmodified carbon nitride (CN), which is one of the highest performances for simulating seawater uranium extraction.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 5","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-Porous Carbon Nitride Through Proton Regulation and Photocatalytic Synergy for Efficient Uranium Extraction From Seawater\",\"authors\":\"Ying Wang,&nbsp;Ruolan Zhao,&nbsp;Zhong Zhou,&nbsp;Yachao Xu,&nbsp;Peng Yu\",\"doi\":\"10.1002/smll.202408650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extracting uranium from seawater is crucial for tapping oceanic resources vital to future energy supply. This study synthesized a novel nitrogen vacancy carbon nitride (NCN) grafted polyethyleneimine (PEI) composite material (NCNP). Experiments and molecular dynamics simulations reveal that NCNP effectively hinders the diffusion of uranyl ions (UO<sub>2</sub><sup>2+</sup>) to the NCN surface, thereby inhibiting electron transfer reactions. This is primarily achieved by the PEI layer, which repels UO<sub>2</sub><sup>2+</sup> and prevents its direct contact with the NCN surface. Water-soluble O<sub>2</sub> can still diffuse to the NCN surface for reduction reactions, ensuring the reduction performance of NCNP. The introduction of PEI enhances the proton affinity of the material. Under acidic conditions, protons (H<sup>+</sup>) bind with PEI, reducing competition between protons and uranyl ions for adsorption on the NCN surface. Under alkaline conditions, protons detach from PEI, facilitating H<sub>2</sub>O<sub>2</sub> generation and promoting uranium extraction. This dynamic proton regulation allows NCNP to perform effectively under varying pH conditions. Experimental results show that NCNP achieves a uranium extraction capacity of 498.7 mg g<sup>−1</sup> in uranium-spiked simulated seawater, which is significantly higher than that of unmodified carbon nitride (CN), which is one of the highest performances for simulating seawater uranium extraction.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 5\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202408650\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202408650","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从海水中提取铀对于开发对未来能源供应至关重要的海洋资源至关重要。本研究合成了一种新型氮空位碳氮(NCN)接枝聚乙烯亚胺(PEI)复合材料(NCNP)。实验和分子动力学模拟表明,NCNP有效地阻止铀酰离子(UO22+)向NCN表面扩散,从而抑制电子转移反应。这主要是通过PEI层实现的,PEI层排斥UO22+并防止其与NCN表面直接接触。水溶性O2仍然可以扩散到NCNP表面进行还原反应,保证了NCNP的还原性能。PEI的引入增强了材料的质子亲和力。在酸性条件下,质子(H+)与PEI结合,减少了质子与铀酰离子在NCN表面吸附的竞争。在碱性条件下,质子与PEI分离,有利于H2O2的生成,促进铀的提取。这种动态质子调节允许NCNP在不同的pH条件下有效地执行。实验结果表明,NCNP在加铀模拟海水中的铀萃取量为498.7 mg g−1,显著高于未改性的氮化碳(CN),是模拟海水铀萃取性能最高的材料之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D-Porous Carbon Nitride Through Proton Regulation and Photocatalytic Synergy for Efficient Uranium Extraction From Seawater

3D-Porous Carbon Nitride Through Proton Regulation and Photocatalytic Synergy for Efficient Uranium Extraction From Seawater

Extracting uranium from seawater is crucial for tapping oceanic resources vital to future energy supply. This study synthesized a novel nitrogen vacancy carbon nitride (NCN) grafted polyethyleneimine (PEI) composite material (NCNP). Experiments and molecular dynamics simulations reveal that NCNP effectively hinders the diffusion of uranyl ions (UO22+) to the NCN surface, thereby inhibiting electron transfer reactions. This is primarily achieved by the PEI layer, which repels UO22+ and prevents its direct contact with the NCN surface. Water-soluble O2 can still diffuse to the NCN surface for reduction reactions, ensuring the reduction performance of NCNP. The introduction of PEI enhances the proton affinity of the material. Under acidic conditions, protons (H+) bind with PEI, reducing competition between protons and uranyl ions for adsorption on the NCN surface. Under alkaline conditions, protons detach from PEI, facilitating H2O2 generation and promoting uranium extraction. This dynamic proton regulation allows NCNP to perform effectively under varying pH conditions. Experimental results show that NCNP achieves a uranium extraction capacity of 498.7 mg g−1 in uranium-spiked simulated seawater, which is significantly higher than that of unmodified carbon nitride (CN), which is one of the highest performances for simulating seawater uranium extraction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信