Luyun Xuan, Hongxue Wang, Mingfeng Wei, Bao Li, Lixin Wu
{"title":"可定制的离子框架选择性气体吸附和分离:桥接的实验见解与机制的理解","authors":"Luyun Xuan, Hongxue Wang, Mingfeng Wei, Bao Li, Lixin Wu","doi":"10.1002/smll.202410518","DOIUrl":null,"url":null,"abstract":"<p>The selective adsorption and separation of gases using solid adsorbents represent a crucial method for the treatment of toxic gases and the preparation of high-purity gases. The interaction forces between gas molecules and solid adsorbents are influenced by various factors, making precise design of adsorbents to achieve specific gas adsorption a pressing issue that requires urgent attention. In this study, a series of ionic frameworks constructed from Na<sup>+</sup> and polyoxometalates (POMs) have been constructed through ionic interactions, and possess multiple adjustable parameters. These frameworks exhibit 3D open channels and demonstrate excellent thermal, humidity, and solvent stability. The synthesized ionic frameworks show strong adsorption capabilities for polar gas molecules such as SO<sub>2</sub> and NH<sub>3</sub>, while exhibiting negligible adsorption for nonpolar or weakly polar gases like CO, O<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>, and H<sub>2</sub>, thereby highlighting their significant gas selectivity. Theoretical calculations reveal that the interaction strength between the ionic frameworks and the polar gases is substantially stronger than that for other gaseous species, corroborating the experimental findings. This research not only provides a series of effective absorbents for polar gases but also elucidates key influencing factors on gas adsorption process, thereby inspiring new directions in the development of innovative gas adsorbents.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 6","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailorable Ionic Frameworks for Selective Gas Adsorption and Separation: Bridging Experimental Insights with Mechanistic Understanding\",\"authors\":\"Luyun Xuan, Hongxue Wang, Mingfeng Wei, Bao Li, Lixin Wu\",\"doi\":\"10.1002/smll.202410518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The selective adsorption and separation of gases using solid adsorbents represent a crucial method for the treatment of toxic gases and the preparation of high-purity gases. The interaction forces between gas molecules and solid adsorbents are influenced by various factors, making precise design of adsorbents to achieve specific gas adsorption a pressing issue that requires urgent attention. In this study, a series of ionic frameworks constructed from Na<sup>+</sup> and polyoxometalates (POMs) have been constructed through ionic interactions, and possess multiple adjustable parameters. These frameworks exhibit 3D open channels and demonstrate excellent thermal, humidity, and solvent stability. The synthesized ionic frameworks show strong adsorption capabilities for polar gas molecules such as SO<sub>2</sub> and NH<sub>3</sub>, while exhibiting negligible adsorption for nonpolar or weakly polar gases like CO, O<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>, and H<sub>2</sub>, thereby highlighting their significant gas selectivity. Theoretical calculations reveal that the interaction strength between the ionic frameworks and the polar gases is substantially stronger than that for other gaseous species, corroborating the experimental findings. This research not only provides a series of effective absorbents for polar gases but also elucidates key influencing factors on gas adsorption process, thereby inspiring new directions in the development of innovative gas adsorbents.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 6\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410518\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410518","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tailorable Ionic Frameworks for Selective Gas Adsorption and Separation: Bridging Experimental Insights with Mechanistic Understanding
The selective adsorption and separation of gases using solid adsorbents represent a crucial method for the treatment of toxic gases and the preparation of high-purity gases. The interaction forces between gas molecules and solid adsorbents are influenced by various factors, making precise design of adsorbents to achieve specific gas adsorption a pressing issue that requires urgent attention. In this study, a series of ionic frameworks constructed from Na+ and polyoxometalates (POMs) have been constructed through ionic interactions, and possess multiple adjustable parameters. These frameworks exhibit 3D open channels and demonstrate excellent thermal, humidity, and solvent stability. The synthesized ionic frameworks show strong adsorption capabilities for polar gas molecules such as SO2 and NH3, while exhibiting negligible adsorption for nonpolar or weakly polar gases like CO, O2, CH4, N2, and H2, thereby highlighting their significant gas selectivity. Theoretical calculations reveal that the interaction strength between the ionic frameworks and the polar gases is substantially stronger than that for other gaseous species, corroborating the experimental findings. This research not only provides a series of effective absorbents for polar gases but also elucidates key influencing factors on gas adsorption process, thereby inspiring new directions in the development of innovative gas adsorbents.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.