质子离子液体:提高导电聚合物薄膜导电性和拉伸性的一般策略

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kyungjin Kim, Minwoo Han, Hyungju Ahn, Minji Kim, Jiyun Noh, Eunseo Noh, Haemin Choi, Seoung Ho Lee, Byoung Hoon Lee
{"title":"质子离子液体:提高导电聚合物薄膜导电性和拉伸性的一般策略","authors":"Kyungjin Kim,&nbsp;Minwoo Han,&nbsp;Hyungju Ahn,&nbsp;Minji Kim,&nbsp;Jiyun Noh,&nbsp;Eunseo Noh,&nbsp;Haemin Choi,&nbsp;Seoung Ho Lee,&nbsp;Byoung Hoon Lee","doi":"10.1002/adfm.202420607","DOIUrl":null,"url":null,"abstract":"<p>Ionic liquids (ILs) are promising materials for enhancing the electrical conductivity and stretchability of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based stretchable transparent conductors. However, the relationship between the chemical structures of ILs and the electrical and mechanical properties of PEDOT:PSS/IL composites remains unclear. In this study, the impact of <i>protic</i> ILs (<i>p</i>-ILs) on the electrical conductivity and stretchability of PEDOT:PSS/IL thin films is investigated via a comparative analysis with <i>aprotic</i> ILs (<i>ap</i>-ILs). By synthesizing a series of <i>p</i>-ILs and <i>ap</i>-ILs based on imidazolium (IM) and bis(trifluoromethanesulfonyl)imide ions, it is demonstrated that <i>p</i>-ILs significantly enhance electrical conductivity and stretchability, outperforming <i>ap</i>-ILs. In addition, these properties further improve with decreasing alkyl chain length of IM cations, achieving maximum electrical conductivity and stretchability of ≈2200 S cm<sup>−1</sup> and 65%, respectively. Notably, the crystalline structures of PEDOT:PSS/IL thin films are elucidated, revealing that <i>p</i>-ILs with shorter alkyl chains facilitate the formation of PSS crystallites due to hydrogen bonding between <i>p</i>-ILs and PSS, which in turn enhance electrical conductivity and stretchability. Leveraging these insights, PEDOT:PSS/<i>p</i>-IL-based strain sensors with broad dynamic ranges and tunable gauge factors are developed. The findings of this study provide valuable design guidelines for developing high-performance ILs in stretchable and wearable electronics.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 14","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protic Ionic Liquids: A General Strategy for Enhancing Electrical Conductivity and Stretchability of Conducting Polymer Thin Films\",\"authors\":\"Kyungjin Kim,&nbsp;Minwoo Han,&nbsp;Hyungju Ahn,&nbsp;Minji Kim,&nbsp;Jiyun Noh,&nbsp;Eunseo Noh,&nbsp;Haemin Choi,&nbsp;Seoung Ho Lee,&nbsp;Byoung Hoon Lee\",\"doi\":\"10.1002/adfm.202420607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ionic liquids (ILs) are promising materials for enhancing the electrical conductivity and stretchability of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based stretchable transparent conductors. However, the relationship between the chemical structures of ILs and the electrical and mechanical properties of PEDOT:PSS/IL composites remains unclear. In this study, the impact of <i>protic</i> ILs (<i>p</i>-ILs) on the electrical conductivity and stretchability of PEDOT:PSS/IL thin films is investigated via a comparative analysis with <i>aprotic</i> ILs (<i>ap</i>-ILs). By synthesizing a series of <i>p</i>-ILs and <i>ap</i>-ILs based on imidazolium (IM) and bis(trifluoromethanesulfonyl)imide ions, it is demonstrated that <i>p</i>-ILs significantly enhance electrical conductivity and stretchability, outperforming <i>ap</i>-ILs. In addition, these properties further improve with decreasing alkyl chain length of IM cations, achieving maximum electrical conductivity and stretchability of ≈2200 S cm<sup>−1</sup> and 65%, respectively. Notably, the crystalline structures of PEDOT:PSS/IL thin films are elucidated, revealing that <i>p</i>-ILs with shorter alkyl chains facilitate the formation of PSS crystallites due to hydrogen bonding between <i>p</i>-ILs and PSS, which in turn enhance electrical conductivity and stretchability. Leveraging these insights, PEDOT:PSS/<i>p</i>-IL-based strain sensors with broad dynamic ranges and tunable gauge factors are developed. The findings of this study provide valuable design guidelines for developing high-performance ILs in stretchable and wearable electronics.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 14\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202420607\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202420607","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

离子液体(ILs)是提高聚(3,4 -乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)基可拉伸透明导体的导电性和可拉伸性的有前途的材料。然而,IL的化学结构与PEDOT:PSS/IL复合材料的电学和力学性能之间的关系尚不清楚。在本研究中,通过与非质子ILs (ap‐ILs)的对比分析,研究了质子ILs (p‐ILs)对PEDOT:PSS/IL薄膜导电性和拉伸性的影响。通过合成一系列基于咪唑(IM)和双(三氟甲磺酰基)亚胺离子的p - il和ap - il,证明p - il显著提高了导电性能和拉伸性能,优于ap - il。此外,随着IM阳离子烷基链长度的减小,这些性能进一步提高,最大电导率和拉伸率分别达到约2200 S cm−1和65%。值得注意的是,研究人员对PEDOT:PSS/IL薄膜的晶体结构进行了分析,发现具有较短烷基链的p - IL与PSS之间的氢键有助于PSS晶体的形成,从而提高了PSS的导电性和拉伸性。利用这些见解,开发了具有宽动态范围和可调测量因子的PEDOT:PSS/p‐IL - based应变传感器。本研究的发现为开发可拉伸和可穿戴电子产品中的高性能集成电路提供了有价值的设计指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Protic Ionic Liquids: A General Strategy for Enhancing Electrical Conductivity and Stretchability of Conducting Polymer Thin Films

Protic Ionic Liquids: A General Strategy for Enhancing Electrical Conductivity and Stretchability of Conducting Polymer Thin Films

Ionic liquids (ILs) are promising materials for enhancing the electrical conductivity and stretchability of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based stretchable transparent conductors. However, the relationship between the chemical structures of ILs and the electrical and mechanical properties of PEDOT:PSS/IL composites remains unclear. In this study, the impact of protic ILs (p-ILs) on the electrical conductivity and stretchability of PEDOT:PSS/IL thin films is investigated via a comparative analysis with aprotic ILs (ap-ILs). By synthesizing a series of p-ILs and ap-ILs based on imidazolium (IM) and bis(trifluoromethanesulfonyl)imide ions, it is demonstrated that p-ILs significantly enhance electrical conductivity and stretchability, outperforming ap-ILs. In addition, these properties further improve with decreasing alkyl chain length of IM cations, achieving maximum electrical conductivity and stretchability of ≈2200 S cm−1 and 65%, respectively. Notably, the crystalline structures of PEDOT:PSS/IL thin films are elucidated, revealing that p-ILs with shorter alkyl chains facilitate the formation of PSS crystallites due to hydrogen bonding between p-ILs and PSS, which in turn enhance electrical conductivity and stretchability. Leveraging these insights, PEDOT:PSS/p-IL-based strain sensors with broad dynamic ranges and tunable gauge factors are developed. The findings of this study provide valuable design guidelines for developing high-performance ILs in stretchable and wearable electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信