调节水和咪唑在共价有机框架中对质子传导的拥挤效应

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kun Zhang, Lei Wu, Yanting Zhang, Hong Zhang, Dongshuang Wu
{"title":"调节水和咪唑在共价有机框架中对质子传导的拥挤效应","authors":"Kun Zhang, Lei Wu, Yanting Zhang, Hong Zhang, Dongshuang Wu","doi":"10.1021/acsami.4c15871","DOIUrl":null,"url":null,"abstract":"The proton conduction of imidazole under confined conditions has attracted widespread attention from researchers. Under anhydrous conditions, the proton transfer behavior is primarily governed by the molecular dynamics of imidazole. However, within a water-mediated system, the crowding effect of water and imidazole in a confined space may outweigh the intrinsic properties of imidazole itself. In this study, we have meticulously adjusted the structural fragments within the covalent organic frameworks (COFs), fine-tuning the saturation level of imidazole loading and adjusting the crowding degree of imidazole and water molecules. As a result, the two COF composites exhibit distinctly different proton conduction mechanisms from 32 to 100% relative humidity (RH), of which one possesses proton conduction progressively shifting from the Grotthuss mechanism to the vehicle mechanism, while the other has proton conduction undergoing a transition from the vehicle mechanism at 32% RH through the Grotthuss mechanism at 75% RH and finally back to the vehicle mechanism at 100% RH. These results highlight the critical role of the crowding effect of water and imidazole within confined spaces in proton conduction.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"64 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the Crowding Effect of Water and Imidazole in Covalent Organic Frameworks for Proton Conduction\",\"authors\":\"Kun Zhang, Lei Wu, Yanting Zhang, Hong Zhang, Dongshuang Wu\",\"doi\":\"10.1021/acsami.4c15871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proton conduction of imidazole under confined conditions has attracted widespread attention from researchers. Under anhydrous conditions, the proton transfer behavior is primarily governed by the molecular dynamics of imidazole. However, within a water-mediated system, the crowding effect of water and imidazole in a confined space may outweigh the intrinsic properties of imidazole itself. In this study, we have meticulously adjusted the structural fragments within the covalent organic frameworks (COFs), fine-tuning the saturation level of imidazole loading and adjusting the crowding degree of imidazole and water molecules. As a result, the two COF composites exhibit distinctly different proton conduction mechanisms from 32 to 100% relative humidity (RH), of which one possesses proton conduction progressively shifting from the Grotthuss mechanism to the vehicle mechanism, while the other has proton conduction undergoing a transition from the vehicle mechanism at 32% RH through the Grotthuss mechanism at 75% RH and finally back to the vehicle mechanism at 100% RH. These results highlight the critical role of the crowding effect of water and imidazole within confined spaces in proton conduction.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c15871\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15871","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

咪唑在受限条件下的质子传导引起了研究者的广泛关注。在无水条件下,质子转移行为主要受咪唑分子动力学的控制。然而,在水介导的体系中,水和咪唑在密闭空间中的拥挤效应可能超过咪唑本身的固有性质。在本研究中,我们对共价有机框架(COFs)内的结构片段进行了细致的调整,微调了咪唑负载的饱和水平,调整了咪唑与水分子的拥挤程度。结果表明,两种COF复合材料在相对湿度为32 ~ 100%时的质子传导机制存在明显差异,其中一种复合材料的质子传导由Grotthuss机制逐步过渡到载体机制,而另一种复合材料的质子传导由32% RH时的载体机制过渡到75% RH时的Grotthuss机制,最后再回到100% RH时的载体机制。这些结果突出了水和咪唑在质子传导的密闭空间内的拥挤效应的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tuning the Crowding Effect of Water and Imidazole in Covalent Organic Frameworks for Proton Conduction

Tuning the Crowding Effect of Water and Imidazole in Covalent Organic Frameworks for Proton Conduction
The proton conduction of imidazole under confined conditions has attracted widespread attention from researchers. Under anhydrous conditions, the proton transfer behavior is primarily governed by the molecular dynamics of imidazole. However, within a water-mediated system, the crowding effect of water and imidazole in a confined space may outweigh the intrinsic properties of imidazole itself. In this study, we have meticulously adjusted the structural fragments within the covalent organic frameworks (COFs), fine-tuning the saturation level of imidazole loading and adjusting the crowding degree of imidazole and water molecules. As a result, the two COF composites exhibit distinctly different proton conduction mechanisms from 32 to 100% relative humidity (RH), of which one possesses proton conduction progressively shifting from the Grotthuss mechanism to the vehicle mechanism, while the other has proton conduction undergoing a transition from the vehicle mechanism at 32% RH through the Grotthuss mechanism at 75% RH and finally back to the vehicle mechanism at 100% RH. These results highlight the critical role of the crowding effect of water and imidazole within confined spaces in proton conduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信