Taeyong Lee, Min Ji Seong, Hyo Chul Ahn, Minsung Baek, Kiho Park, Jihoon Oh, Taehoon Choi, Jang Wook Choi
{"title":"快速充电锂离子电池采用μ-Si阳极定制的全电池设计","authors":"Taeyong Lee, Min Ji Seong, Hyo Chul Ahn, Minsung Baek, Kiho Park, Jihoon Oh, Taehoon Choi, Jang Wook Choi","doi":"10.1073/pnas.2417053121","DOIUrl":null,"url":null,"abstract":"Silicon (Si) anodes have long been recognized to significantly improve the energy density and fast-charging capability of lithium-ion batteries (LIBs). However, the implementation of these anodes in commercial LIB cells has progressed incrementally due to the immense volume change of Si across its full state-of-charge (SOC) range. Here, we report an anode-tailored full-cell design (ATFD), which incorporates micrometer-sized silicon (μ-Si) alone, for operation over a limited, prespecified SOC range identified as 30−70%. This range allows homogeneous (de)lithiation throughout the electrode, accompanied by an acceptable level of volume change. The ATFD-based cell exhibits 21.3% higher gravimetric energy density than that of its graphite-based counterpart in a commercial 18650 cylindrical cell and 84.6% capacity retention after 500 cycles even at a fast-charging rate of 3 C. This study indicates that the partial, intermediate SOC operation of the μ-Si anode can markedly increase the energy density and boost the fast-charging capability of a LIB cell, a challenging task in traditional cell engineering.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"6 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast-chargeable lithium-ion batteries by μ-Si anode-tailored full-cell design\",\"authors\":\"Taeyong Lee, Min Ji Seong, Hyo Chul Ahn, Minsung Baek, Kiho Park, Jihoon Oh, Taehoon Choi, Jang Wook Choi\",\"doi\":\"10.1073/pnas.2417053121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon (Si) anodes have long been recognized to significantly improve the energy density and fast-charging capability of lithium-ion batteries (LIBs). However, the implementation of these anodes in commercial LIB cells has progressed incrementally due to the immense volume change of Si across its full state-of-charge (SOC) range. Here, we report an anode-tailored full-cell design (ATFD), which incorporates micrometer-sized silicon (μ-Si) alone, for operation over a limited, prespecified SOC range identified as 30−70%. This range allows homogeneous (de)lithiation throughout the electrode, accompanied by an acceptable level of volume change. The ATFD-based cell exhibits 21.3% higher gravimetric energy density than that of its graphite-based counterpart in a commercial 18650 cylindrical cell and 84.6% capacity retention after 500 cycles even at a fast-charging rate of 3 C. This study indicates that the partial, intermediate SOC operation of the μ-Si anode can markedly increase the energy density and boost the fast-charging capability of a LIB cell, a challenging task in traditional cell engineering.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2417053121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2417053121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Fast-chargeable lithium-ion batteries by μ-Si anode-tailored full-cell design
Silicon (Si) anodes have long been recognized to significantly improve the energy density and fast-charging capability of lithium-ion batteries (LIBs). However, the implementation of these anodes in commercial LIB cells has progressed incrementally due to the immense volume change of Si across its full state-of-charge (SOC) range. Here, we report an anode-tailored full-cell design (ATFD), which incorporates micrometer-sized silicon (μ-Si) alone, for operation over a limited, prespecified SOC range identified as 30−70%. This range allows homogeneous (de)lithiation throughout the electrode, accompanied by an acceptable level of volume change. The ATFD-based cell exhibits 21.3% higher gravimetric energy density than that of its graphite-based counterpart in a commercial 18650 cylindrical cell and 84.6% capacity retention after 500 cycles even at a fast-charging rate of 3 C. This study indicates that the partial, intermediate SOC operation of the μ-Si anode can markedly increase the energy density and boost the fast-charging capability of a LIB cell, a challenging task in traditional cell engineering.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.