6G边缘云中的生成式AI即服务:基于情境学习的生成任务卸载

IF 4.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Hao Zhou;Chengming Hu;Dun Yuan;Ye Yuan;Di Wu;Xue Liu;Zhu Han;Jianzhong Zhang
{"title":"6G边缘云中的生成式AI即服务:基于情境学习的生成任务卸载","authors":"Hao Zhou;Chengming Hu;Dun Yuan;Ye Yuan;Di Wu;Xue Liu;Zhu Han;Jianzhong Zhang","doi":"10.1109/LWC.2024.3520995","DOIUrl":null,"url":null,"abstract":"Generative artificial intelligence (GAI) is a promising technique towards 6G networks, and generative foundation models such as large language models (LLMs) have attracted considerable interest from academia and industry. This letter considers a novel edge-cloud deployment of foundation models in 6G networks. Specifically, it aims to minimize the service delay of foundation models by radio resource allocation and task offloading, i.e., offloading diverse content generation tasks to proper LLMs at the network edge or cloud. In particular, we first introduce the communication system model, i.e., allocating radio resources and calculating link capacity to support generated content transmission, and then we present the LLM inference model to calculate the delay of content generation. After that, we propose a novel in-context learning method to optimize the task offloading decisions. It utilizes LLM’s inference capabilities, and avoids the difficulty of dedicated model training or fine-tuning as in conventional machine learning algorithms. Finally, the simulations demonstrate that the proposed edge-cloud deployment and in-context learning method can achieve satisfactory generation service quality without dedicated model training.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"14 3","pages":"711-715"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative AI as a Service in 6G Edge-Cloud: Generation Task Offloading by In-Context Learning\",\"authors\":\"Hao Zhou;Chengming Hu;Dun Yuan;Ye Yuan;Di Wu;Xue Liu;Zhu Han;Jianzhong Zhang\",\"doi\":\"10.1109/LWC.2024.3520995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative artificial intelligence (GAI) is a promising technique towards 6G networks, and generative foundation models such as large language models (LLMs) have attracted considerable interest from academia and industry. This letter considers a novel edge-cloud deployment of foundation models in 6G networks. Specifically, it aims to minimize the service delay of foundation models by radio resource allocation and task offloading, i.e., offloading diverse content generation tasks to proper LLMs at the network edge or cloud. In particular, we first introduce the communication system model, i.e., allocating radio resources and calculating link capacity to support generated content transmission, and then we present the LLM inference model to calculate the delay of content generation. After that, we propose a novel in-context learning method to optimize the task offloading decisions. It utilizes LLM’s inference capabilities, and avoids the difficulty of dedicated model training or fine-tuning as in conventional machine learning algorithms. Finally, the simulations demonstrate that the proposed edge-cloud deployment and in-context learning method can achieve satisfactory generation service quality without dedicated model training.\",\"PeriodicalId\":13343,\"journal\":{\"name\":\"IEEE Wireless Communications Letters\",\"volume\":\"14 3\",\"pages\":\"711-715\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10811953/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10811953/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative AI as a Service in 6G Edge-Cloud: Generation Task Offloading by In-Context Learning
Generative artificial intelligence (GAI) is a promising technique towards 6G networks, and generative foundation models such as large language models (LLMs) have attracted considerable interest from academia and industry. This letter considers a novel edge-cloud deployment of foundation models in 6G networks. Specifically, it aims to minimize the service delay of foundation models by radio resource allocation and task offloading, i.e., offloading diverse content generation tasks to proper LLMs at the network edge or cloud. In particular, we first introduce the communication system model, i.e., allocating radio resources and calculating link capacity to support generated content transmission, and then we present the LLM inference model to calculate the delay of content generation. After that, we propose a novel in-context learning method to optimize the task offloading decisions. It utilizes LLM’s inference capabilities, and avoids the difficulty of dedicated model training or fine-tuning as in conventional machine learning algorithms. Finally, the simulations demonstrate that the proposed edge-cloud deployment and in-context learning method can achieve satisfactory generation service quality without dedicated model training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Wireless Communications Letters
IEEE Wireless Communications Letters Engineering-Electrical and Electronic Engineering
CiteScore
12.30
自引率
6.30%
发文量
481
期刊介绍: IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信