LPSGM:用于睡眠分期和精神障碍诊断的统一灵活的大PSG模型。

Guifeng Deng, Mengfan Niu, Yuxi Luo, Shuying Rao, Junyi Xie, Zhenghe Yu, Wenjuan Liu, Sha Zhao, Gang Pan, Xiaojing Li, Wei Deng, Wanjun Guo, Tao Li, Haiteng Jiang
{"title":"LPSGM:用于睡眠分期和精神障碍诊断的统一灵活的大PSG模型。","authors":"Guifeng Deng, Mengfan Niu, Yuxi Luo, Shuying Rao, Junyi Xie, Zhenghe Yu, Wenjuan Liu, Sha Zhao, Gang Pan, Xiaojing Li, Wei Deng, Wanjun Guo, Tao Li, Haiteng Jiang","doi":"10.1101/2024.12.11.24318815","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep quality is vital to human health, yet automated sleep staging faces challenges in cross-center generalization due to data scarcity and domain gaps. Traditional scoring is labor-intensive, while deep learning models often fail to generalize across datasets. Here, we present LPSGM, a unified and flexible large polysomnography (PSG) model designed to enhance cross-center generalization in sleep staging and enable fine-tuning for disease diagnosis. Trained on 220,500 hours of PSG data from 16 public datasets, LPSGM integrates domain-adaptive learning and supports variable-channel configurations, achieving performance comparable to models trained directly on target-center data. In a prospective clinical study, LPSGM matches expert-level accuracy with lower variability. When fine-tuned, it attains 88.01% accuracy in narcolepsy detection and 100% in depression detection. These results establish LPSGM as a scalable, plug-and-play solution for automated PSG analysis, bridging the gap between sleep staging and clinical deployment.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661386/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Unified Flexible Large Polysomnography Model for Sleep Staging and Mental Disorder Diagnosis.\",\"authors\":\"Guifeng Deng, Mengfan Niu, Yuxi Luo, Shuying Rao, Junyi Xie, Zhenghe Yu, Wenjuan Liu, Sha Zhao, Gang Pan, Xiaojing Li, Wei Deng, Wanjun Guo, Tao Li, Haiteng Jiang\",\"doi\":\"10.1101/2024.12.11.24318815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sleep quality is vital to human health, yet automated sleep staging faces challenges in cross-center generalization due to data scarcity and domain gaps. Traditional scoring is labor-intensive, while deep learning models often fail to generalize across datasets. Here, we present LPSGM, a unified and flexible large polysomnography (PSG) model designed to enhance cross-center generalization in sleep staging and enable fine-tuning for disease diagnosis. Trained on 220,500 hours of PSG data from 16 public datasets, LPSGM integrates domain-adaptive learning and supports variable-channel configurations, achieving performance comparable to models trained directly on target-center data. In a prospective clinical study, LPSGM matches expert-level accuracy with lower variability. When fine-tuned, it attains 88.01% accuracy in narcolepsy detection and 100% in depression detection. These results establish LPSGM as a scalable, plug-and-play solution for automated PSG analysis, bridging the gap between sleep staging and clinical deployment.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661386/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.12.11.24318815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.11.24318815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了大型多导睡眠图模型(LPSGM),这是一个统一而灵活的框架,用于使用多导睡眠图(PSG)数据进行睡眠分期和疾病诊断。LPSGM旨在解决睡眠分期中跨中心泛化的挑战,并为下游疾病诊断任务提供微调。LPSGM为异构数据集引入了统一的训练框架,并允许在推理过程中灵活地调整信道输入。该模型首先在来自16个公共数据集的220,500小时通宵PSG上进行训练,获得了稳健的睡眠分期性能。然后对目标中心数据进行微调,用于各种疾病分类任务,包括嗜睡症诊断、焦虑和抑郁检测,以及健康与抑郁个体的分类。LPSGM在睡眠分期和疾病诊断任务上都优于基线模型。我们的研究结果表明,LPSGM不仅提高了睡眠分期的准确性,而且还改善了睡眠相关疾病和精神疾病的诊断,在睡眠医学和精神病学的临床应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Flexible Large Polysomnography Model for Sleep Staging and Mental Disorder Diagnosis.

Sleep quality is vital to human health, yet automated sleep staging faces challenges in cross-center generalization due to data scarcity and domain gaps. Traditional scoring is labor-intensive, while deep learning models often fail to generalize across datasets. Here, we present LPSGM, a unified and flexible large polysomnography (PSG) model designed to enhance cross-center generalization in sleep staging and enable fine-tuning for disease diagnosis. Trained on 220,500 hours of PSG data from 16 public datasets, LPSGM integrates domain-adaptive learning and supports variable-channel configurations, achieving performance comparable to models trained directly on target-center data. In a prospective clinical study, LPSGM matches expert-level accuracy with lower variability. When fine-tuned, it attains 88.01% accuracy in narcolepsy detection and 100% in depression detection. These results establish LPSGM as a scalable, plug-and-play solution for automated PSG analysis, bridging the gap between sleep staging and clinical deployment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信