LPSGM:用于睡眠分期和精神障碍诊断的统一灵活的大PSG模型。

Guifeng Deng, Mengfan Niu, Shuying Rao, Yuxi Luo, Jianjia Zhang, Junyi Xie, Zhenghe Yu, Wenjuan Liu, Junhang Zhang, Sha Zhao, Gang Pan, Xiaojing Li, Wei Deng, Wanjun Guo, Yaoyun Zhang, Tao Li, Haiteng Jiang
{"title":"LPSGM:用于睡眠分期和精神障碍诊断的统一灵活的大PSG模型。","authors":"Guifeng Deng, Mengfan Niu, Shuying Rao, Yuxi Luo, Jianjia Zhang, Junyi Xie, Zhenghe Yu, Wenjuan Liu, Junhang Zhang, Sha Zhao, Gang Pan, Xiaojing Li, Wei Deng, Wanjun Guo, Yaoyun Zhang, Tao Li, Haiteng Jiang","doi":"10.1101/2024.12.11.24318815","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep disorders affect billions worldwide, yet clinical polysomnography (PSG) analysis remains hindered by labor-intensive manual scoring and limited generalizability of automated sleep staging tools across heterogeneous protocols. We present LPSGM, a large-scale PSG model designed to address two critical challenges in sleep medicine: cross-center generalization and adaptable diagnosis of neuropsychiatric disorders. Trained on 220,500 hours of multi-center PSG data (24,000 full-night recordings from 16 public datasets), LPSGM integrates domain-adaptive pre-training, flexible channel configurations, and a unified architecture to mitigate variability in equipment, montages, and populations during sleep staging while enabling downstream fine-tuning for mental disorder detection. In prospective validation, LPSGM achieves expert-level consensus in sleep staging (κ = 0.845 ± 0.066 vs. inter-expert κ = 0.850 ± 0.102) and matches the performance of fully supervised models on two independent private cohorts. When fine-tuned, it attains 88.01% accuracy in narcolepsy detection and 100% accuracy in identifying major depressive disorder (MDD), highlighting shared physiological biomarkers between sleep architecture and neuropsychiatric symptoms. By bridging automated sleep staging with real-world clinical deployment, LPSGM establishes a scalable, data-efficient framework for integrated sleep and mental health diagnostics. The code and pre-trained model are publicly available at https://github.com/Deng-GuiFeng/LPSGM to advance reproducibility and translational research in sleep medicine.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661386/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Unified Flexible Large Polysomnography Model for Sleep Staging and Mental Disorder Diagnosis.\",\"authors\":\"Guifeng Deng, Mengfan Niu, Shuying Rao, Yuxi Luo, Jianjia Zhang, Junyi Xie, Zhenghe Yu, Wenjuan Liu, Junhang Zhang, Sha Zhao, Gang Pan, Xiaojing Li, Wei Deng, Wanjun Guo, Yaoyun Zhang, Tao Li, Haiteng Jiang\",\"doi\":\"10.1101/2024.12.11.24318815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sleep disorders affect billions worldwide, yet clinical polysomnography (PSG) analysis remains hindered by labor-intensive manual scoring and limited generalizability of automated sleep staging tools across heterogeneous protocols. We present LPSGM, a large-scale PSG model designed to address two critical challenges in sleep medicine: cross-center generalization and adaptable diagnosis of neuropsychiatric disorders. Trained on 220,500 hours of multi-center PSG data (24,000 full-night recordings from 16 public datasets), LPSGM integrates domain-adaptive pre-training, flexible channel configurations, and a unified architecture to mitigate variability in equipment, montages, and populations during sleep staging while enabling downstream fine-tuning for mental disorder detection. In prospective validation, LPSGM achieves expert-level consensus in sleep staging (κ = 0.845 ± 0.066 vs. inter-expert κ = 0.850 ± 0.102) and matches the performance of fully supervised models on two independent private cohorts. When fine-tuned, it attains 88.01% accuracy in narcolepsy detection and 100% accuracy in identifying major depressive disorder (MDD), highlighting shared physiological biomarkers between sleep architecture and neuropsychiatric symptoms. By bridging automated sleep staging with real-world clinical deployment, LPSGM establishes a scalable, data-efficient framework for integrated sleep and mental health diagnostics. The code and pre-trained model are publicly available at https://github.com/Deng-GuiFeng/LPSGM to advance reproducibility and translational research in sleep medicine.</p>\",\"PeriodicalId\":94281,\"journal\":{\"name\":\"medRxiv : the preprint server for health sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661386/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv : the preprint server for health sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.12.11.24318815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.11.24318815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了大型多导睡眠图模型(LPSGM),这是一个统一而灵活的框架,用于使用多导睡眠图(PSG)数据进行睡眠分期和疾病诊断。LPSGM旨在解决睡眠分期中跨中心泛化的挑战,并为下游疾病诊断任务提供微调。LPSGM为异构数据集引入了统一的训练框架,并允许在推理过程中灵活地调整信道输入。该模型首先在来自16个公共数据集的220,500小时通宵PSG上进行训练,获得了稳健的睡眠分期性能。然后对目标中心数据进行微调,用于各种疾病分类任务,包括嗜睡症诊断、焦虑和抑郁检测,以及健康与抑郁个体的分类。LPSGM在睡眠分期和疾病诊断任务上都优于基线模型。我们的研究结果表明,LPSGM不仅提高了睡眠分期的准确性,而且还改善了睡眠相关疾病和精神疾病的诊断,在睡眠医学和精神病学的临床应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Flexible Large Polysomnography Model for Sleep Staging and Mental Disorder Diagnosis.

Sleep disorders affect billions worldwide, yet clinical polysomnography (PSG) analysis remains hindered by labor-intensive manual scoring and limited generalizability of automated sleep staging tools across heterogeneous protocols. We present LPSGM, a large-scale PSG model designed to address two critical challenges in sleep medicine: cross-center generalization and adaptable diagnosis of neuropsychiatric disorders. Trained on 220,500 hours of multi-center PSG data (24,000 full-night recordings from 16 public datasets), LPSGM integrates domain-adaptive pre-training, flexible channel configurations, and a unified architecture to mitigate variability in equipment, montages, and populations during sleep staging while enabling downstream fine-tuning for mental disorder detection. In prospective validation, LPSGM achieves expert-level consensus in sleep staging (κ = 0.845 ± 0.066 vs. inter-expert κ = 0.850 ± 0.102) and matches the performance of fully supervised models on two independent private cohorts. When fine-tuned, it attains 88.01% accuracy in narcolepsy detection and 100% accuracy in identifying major depressive disorder (MDD), highlighting shared physiological biomarkers between sleep architecture and neuropsychiatric symptoms. By bridging automated sleep staging with real-world clinical deployment, LPSGM establishes a scalable, data-efficient framework for integrated sleep and mental health diagnostics. The code and pre-trained model are publicly available at https://github.com/Deng-GuiFeng/LPSGM to advance reproducibility and translational research in sleep medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信