Fuxin Lu, Celeste Yen, Chase D Corley, Jeffrey G McDonald, Tiina Manninen, Nicholas R Stewart, Christina M Zhu, Donna M Ferriero, Xiangning Jiang
{"title":"新生小鼠缺氧缺血后脑胆固醇生物合成途径的失调。","authors":"Fuxin Lu, Celeste Yen, Chase D Corley, Jeffrey G McDonald, Tiina Manninen, Nicholas R Stewart, Christina M Zhu, Donna M Ferriero, Xiangning Jiang","doi":"10.1159/000543254","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Brain cholesterol relies on de novo biosynthesis and is crucial for brain development. Cholesterol synthesis is a complex series of reactions that involves more than twenty enzymes to reach the final product and generates a large number of intermediate sterols along two alternate pathways. This is a highly regulated and oxygen-dependent process, and thus sensitive to hypoxia.</p><p><strong>Methods: </strong>Using the modified Vannucci procedure, a clinically relevant animal model of neonatal hypoxia-ischemia (HI), we characterized the profile of cholesterol and its sterol intermediates, along with the key enzymes on the cholesterol synthetic pathway over a time course of 5 days after HI in the postnatal day 10 mouse brain.</p><p><strong>Results: </strong>Although the total cholesterol levels in the injured cortices appeared to be minimally attenuated at 5 days following HI, there was an overall repression of brain cholesterol biosynthesis. Lanosterol and the downstream sterols in both the Bloch and Kandutsch-Russell (K-R) pathways were consistently reduced for up to 3 days except for desmosterol which was elevated. Correspondingly, protein expression of the controlling transcription factors sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1 was decreased at early time points (within 6 hours), in parallel with the downregulation of several substrate enzymes for up to 5 days post-HI. HMG-CoA reductase (HMGCR), the first rate-limiting enzyme, was upregulated in the first 24 hours after HI. The expression of 24-dehydrocholesterol reductase (DHCR24) that catalyzes the last step to produce cholesterol on the Bloch pathway and bridges the Bloch to K-R pathway was also augmented.</p><p><strong>Conclusions: </strong>Our data suggest perturbed brain cholesterol biosynthesis following neonatal HI. As some sterol intermediates and enzymes have diverse functions in brain development and stress responses other than producing cholesterol, assessment of their dynamic changes after HI is important to understand the lipid responses in rodent HI models and to identify lipid-based targeted therapies in future studies.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"1-24"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dysregulation of brain cholesterol biosynthetic pathway following hypoxia-ischemia in neonatal mice.\",\"authors\":\"Fuxin Lu, Celeste Yen, Chase D Corley, Jeffrey G McDonald, Tiina Manninen, Nicholas R Stewart, Christina M Zhu, Donna M Ferriero, Xiangning Jiang\",\"doi\":\"10.1159/000543254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Brain cholesterol relies on de novo biosynthesis and is crucial for brain development. Cholesterol synthesis is a complex series of reactions that involves more than twenty enzymes to reach the final product and generates a large number of intermediate sterols along two alternate pathways. This is a highly regulated and oxygen-dependent process, and thus sensitive to hypoxia.</p><p><strong>Methods: </strong>Using the modified Vannucci procedure, a clinically relevant animal model of neonatal hypoxia-ischemia (HI), we characterized the profile of cholesterol and its sterol intermediates, along with the key enzymes on the cholesterol synthetic pathway over a time course of 5 days after HI in the postnatal day 10 mouse brain.</p><p><strong>Results: </strong>Although the total cholesterol levels in the injured cortices appeared to be minimally attenuated at 5 days following HI, there was an overall repression of brain cholesterol biosynthesis. Lanosterol and the downstream sterols in both the Bloch and Kandutsch-Russell (K-R) pathways were consistently reduced for up to 3 days except for desmosterol which was elevated. Correspondingly, protein expression of the controlling transcription factors sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1 was decreased at early time points (within 6 hours), in parallel with the downregulation of several substrate enzymes for up to 5 days post-HI. HMG-CoA reductase (HMGCR), the first rate-limiting enzyme, was upregulated in the first 24 hours after HI. The expression of 24-dehydrocholesterol reductase (DHCR24) that catalyzes the last step to produce cholesterol on the Bloch pathway and bridges the Bloch to K-R pathway was also augmented.</p><p><strong>Conclusions: </strong>Our data suggest perturbed brain cholesterol biosynthesis following neonatal HI. As some sterol intermediates and enzymes have diverse functions in brain development and stress responses other than producing cholesterol, assessment of their dynamic changes after HI is important to understand the lipid responses in rodent HI models and to identify lipid-based targeted therapies in future studies.</p>\",\"PeriodicalId\":50585,\"journal\":{\"name\":\"Developmental Neuroscience\",\"volume\":\" \",\"pages\":\"1-24\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000543254\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000543254","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Dysregulation of brain cholesterol biosynthetic pathway following hypoxia-ischemia in neonatal mice.
Introduction: Brain cholesterol relies on de novo biosynthesis and is crucial for brain development. Cholesterol synthesis is a complex series of reactions that involves more than twenty enzymes to reach the final product and generates a large number of intermediate sterols along two alternate pathways. This is a highly regulated and oxygen-dependent process, and thus sensitive to hypoxia.
Methods: Using the modified Vannucci procedure, a clinically relevant animal model of neonatal hypoxia-ischemia (HI), we characterized the profile of cholesterol and its sterol intermediates, along with the key enzymes on the cholesterol synthetic pathway over a time course of 5 days after HI in the postnatal day 10 mouse brain.
Results: Although the total cholesterol levels in the injured cortices appeared to be minimally attenuated at 5 days following HI, there was an overall repression of brain cholesterol biosynthesis. Lanosterol and the downstream sterols in both the Bloch and Kandutsch-Russell (K-R) pathways were consistently reduced for up to 3 days except for desmosterol which was elevated. Correspondingly, protein expression of the controlling transcription factors sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1 was decreased at early time points (within 6 hours), in parallel with the downregulation of several substrate enzymes for up to 5 days post-HI. HMG-CoA reductase (HMGCR), the first rate-limiting enzyme, was upregulated in the first 24 hours after HI. The expression of 24-dehydrocholesterol reductase (DHCR24) that catalyzes the last step to produce cholesterol on the Bloch pathway and bridges the Bloch to K-R pathway was also augmented.
Conclusions: Our data suggest perturbed brain cholesterol biosynthesis following neonatal HI. As some sterol intermediates and enzymes have diverse functions in brain development and stress responses other than producing cholesterol, assessment of their dynamic changes after HI is important to understand the lipid responses in rodent HI models and to identify lipid-based targeted therapies in future studies.
期刊介绍:
''Developmental Neuroscience'' is a multidisciplinary journal publishing papers covering all stages of invertebrate, vertebrate and human brain development. Emphasis is placed on publishing fundamental as well as translational studies that contribute to our understanding of mechanisms of normal development as well as genetic and environmental causes of abnormal brain development. The journal thus provides valuable information for both physicians and biologists. To meet the rapidly expanding information needs of its readers, the journal combines original papers that report on progress and advances in developmental neuroscience with concise mini-reviews that provide a timely overview of key topics, new insights and ongoing controversies. The editorial standards of ''Developmental Neuroscience'' are high. We are committed to publishing only high quality, complete papers that make significant contributions to the field.