利用不同的电离、计算和可视化方法对假互交单胞菌微生物天然产物的空间代谢组分析进行快速和稳健的工作流程。

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
ACS Measurement Science Au Pub Date : 2024-10-21 eCollection Date: 2024-12-18 DOI:10.1021/acsmeasuresciau.4c00035
Jian Yu, Haidy Metwally, Jennifer Kolwich, Hailey Tomm, Martin Kaufmann, Rachel Klotz, Chang Liu, J C Yves Le Blanc, Thomas R Covey, John Rudan, Avena C Ross, Richard D Oleschuk
{"title":"利用不同的电离、计算和可视化方法对假互交单胞菌微生物天然产物的空间代谢组分析进行快速和稳健的工作流程。","authors":"Jian Yu, Haidy Metwally, Jennifer Kolwich, Hailey Tomm, Martin Kaufmann, Rachel Klotz, Chang Liu, J C Yves Le Blanc, Thomas R Covey, John Rudan, Avena C Ross, Richard D Oleschuk","doi":"10.1021/acsmeasuresciau.4c00035","DOIUrl":null,"url":null,"abstract":"<p><p>Ambient mass spectrometry (MS) technologies have been applied to spatial metabolomic profiling of various samples in an attempt to both increase analysis speed and reduce the length of sample preparation. Recent studies, however, have focused on improving the spatial resolution of ambient approaches. Finer resolution requires greater analysis times and commensurate computing power for more sophisticated data analysis algorithms and larger data sets. Higher resolution provides a more detailed molecular picture of the sample; however, for some applications, this is not required. A liquid microjunction surface sampling probe (LMJ-SSP) based MS platform combined with unsupervised multivariant analysis based hyperspectral visualization is demonstrated for the metabolomic analysis of marine bacteria from the genus <i>Pseudoalteromonas</i> to create a rapid and robust spatial profiling workflow for microbial natural product screening. In our study, metabolomic profiles of different <i>Pseudoalteromonas</i> species are quickly acquired without any sample preparation and distinguished by unsupervised multivariant analysis. Our robust platform is capable of automated direct sampling of microbes cultured on agar without clogging. Hyperspectral visualization-based rapid spatial profiling provides adequate spatial metabolite information on microbial samples through red-green-blue (RGB) color annotation. Both static and temporal metabolome differences can be visualized by straightforward color differences and differentiating <i>m</i>/<i>z</i> values identified afterward. Through this approach, novel analogues and their potential biosynthetic pathways are discovered by applying results from the spatial navigation to chromatography-based metabolome annotation. In this current research, LMJ-SSP is shown to be a robust and rapid spatial profiling method. Unsupervised multivariant analysis based hyperspectral visualization is proven straightforward for facile/rapid data interpretation. The combination of direct analysis and innovative data visualization forms a powerful tool to aid the identification/interpretation of interesting compounds from conventional metabolomics analysis.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 6","pages":"668-677"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659995/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid and Robust Workflows Using Different Ionization, Computation, and Visualization Approaches for Spatial Metabolome Profiling of Microbial Natural Products in <i>Pseudoalteromonas</i>.\",\"authors\":\"Jian Yu, Haidy Metwally, Jennifer Kolwich, Hailey Tomm, Martin Kaufmann, Rachel Klotz, Chang Liu, J C Yves Le Blanc, Thomas R Covey, John Rudan, Avena C Ross, Richard D Oleschuk\",\"doi\":\"10.1021/acsmeasuresciau.4c00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ambient mass spectrometry (MS) technologies have been applied to spatial metabolomic profiling of various samples in an attempt to both increase analysis speed and reduce the length of sample preparation. Recent studies, however, have focused on improving the spatial resolution of ambient approaches. Finer resolution requires greater analysis times and commensurate computing power for more sophisticated data analysis algorithms and larger data sets. Higher resolution provides a more detailed molecular picture of the sample; however, for some applications, this is not required. A liquid microjunction surface sampling probe (LMJ-SSP) based MS platform combined with unsupervised multivariant analysis based hyperspectral visualization is demonstrated for the metabolomic analysis of marine bacteria from the genus <i>Pseudoalteromonas</i> to create a rapid and robust spatial profiling workflow for microbial natural product screening. In our study, metabolomic profiles of different <i>Pseudoalteromonas</i> species are quickly acquired without any sample preparation and distinguished by unsupervised multivariant analysis. Our robust platform is capable of automated direct sampling of microbes cultured on agar without clogging. Hyperspectral visualization-based rapid spatial profiling provides adequate spatial metabolite information on microbial samples through red-green-blue (RGB) color annotation. Both static and temporal metabolome differences can be visualized by straightforward color differences and differentiating <i>m</i>/<i>z</i> values identified afterward. Through this approach, novel analogues and their potential biosynthetic pathways are discovered by applying results from the spatial navigation to chromatography-based metabolome annotation. In this current research, LMJ-SSP is shown to be a robust and rapid spatial profiling method. Unsupervised multivariant analysis based hyperspectral visualization is proven straightforward for facile/rapid data interpretation. The combination of direct analysis and innovative data visualization forms a powerful tool to aid the identification/interpretation of interesting compounds from conventional metabolomics analysis.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"4 6\",\"pages\":\"668-677\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659995/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmeasuresciau.4c00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmeasuresciau.4c00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

环境质谱(MS)技术已被应用于各种样品的空间代谢组学分析,以提高分析速度并缩短样品制备时间。然而,最近的研究集中在提高环境方法的空间分辨率上。对于更复杂的数据分析算法和更大的数据集,更精细的分辨率需要更长的分析时间和相应的计算能力。更高的分辨率提供了样品更详细的分子图像;但是,对于某些应用程序,这不是必需的。基于液体微结表面采样探针(LMJ-SSP)的MS平台结合基于无监督多变量分析的高光谱可视化,用于假互单胞菌属海洋细菌的代谢组学分析,为微生物天然产物筛选创建快速而稳健的空间分析工作流程。在我们的研究中,不需要任何样品制备,就可以快速获得不同假互变单胞菌种类的代谢组学特征,并通过无监督的多变量分析进行区分。我们强大的平台能够在没有堵塞的情况下对琼脂上培养的微生物进行自动直接采样。基于高光谱可视化的快速空间分析通过红-绿-蓝(RGB)颜色注释提供了足够的微生物样品空间代谢物信息。静态和时间代谢组差异都可以通过直接的颜色差异和随后确定的区分m/z值来可视化。通过这种方法,通过将空间导航结果应用于基于色谱的代谢组注释,可以发现新的类似物及其潜在的生物合成途径。在本研究中,LMJ-SSP被证明是一种鲁棒且快速的空间剖面方法。基于无监督多变量分析的高光谱可视化被证明是简单/快速的数据解释。直接分析和创新数据可视化的结合形成了一个强大的工具,可以帮助识别/解释传统代谢组学分析中有趣的化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid and Robust Workflows Using Different Ionization, Computation, and Visualization Approaches for Spatial Metabolome Profiling of Microbial Natural Products in Pseudoalteromonas.

Ambient mass spectrometry (MS) technologies have been applied to spatial metabolomic profiling of various samples in an attempt to both increase analysis speed and reduce the length of sample preparation. Recent studies, however, have focused on improving the spatial resolution of ambient approaches. Finer resolution requires greater analysis times and commensurate computing power for more sophisticated data analysis algorithms and larger data sets. Higher resolution provides a more detailed molecular picture of the sample; however, for some applications, this is not required. A liquid microjunction surface sampling probe (LMJ-SSP) based MS platform combined with unsupervised multivariant analysis based hyperspectral visualization is demonstrated for the metabolomic analysis of marine bacteria from the genus Pseudoalteromonas to create a rapid and robust spatial profiling workflow for microbial natural product screening. In our study, metabolomic profiles of different Pseudoalteromonas species are quickly acquired without any sample preparation and distinguished by unsupervised multivariant analysis. Our robust platform is capable of automated direct sampling of microbes cultured on agar without clogging. Hyperspectral visualization-based rapid spatial profiling provides adequate spatial metabolite information on microbial samples through red-green-blue (RGB) color annotation. Both static and temporal metabolome differences can be visualized by straightforward color differences and differentiating m/z values identified afterward. Through this approach, novel analogues and their potential biosynthetic pathways are discovered by applying results from the spatial navigation to chromatography-based metabolome annotation. In this current research, LMJ-SSP is shown to be a robust and rapid spatial profiling method. Unsupervised multivariant analysis based hyperspectral visualization is proven straightforward for facile/rapid data interpretation. The combination of direct analysis and innovative data visualization forms a powerful tool to aid the identification/interpretation of interesting compounds from conventional metabolomics analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信