{"title":"vWFA2电化学谱分析用于全身炎症状态检测。","authors":"Bianca Elizabeth David, Sasya Madhurantakam, Jayanth Babu Karnam, Sriram Muthukumar, Shalini Prasad","doi":"10.1021/acsmeasuresciau.4c00060","DOIUrl":null,"url":null,"abstract":"<p><p>This research aims to develop a portable biosensor device for quickly detecting vWFA2, a biomarker for inflammatory conditions. This sensor could dramatically change detection methods and lead us to improve the sensitivity of our tests to overcome the limitations of conventional detection methods. Our label-free biomolecular assay is constructed on an Au-ZnO electrode surface and uses electrochemical impedance spectroscopy (EIS) to measure the capacitive change in impedance, revealing the binding effects of the target vWFA2, to the capture probe. Our developed biosensor platform exhibits greater sensitivity and specificity, covering a wide dynamic range of 750-24,000 pg/mL and showing a strong correlation with inflammatory conditions. This sensor exhibited a greater accuracy ranging from 86-110% for the known spiked concentrations in nondiluted or modified plasma samples. This electrochemical sensor has the potential to advance point-of-care diagnostic methods due to its high sensitivity and rapid response time. The vision behind this research is to develop an electrochemical sensor that can rapidly and accurately detect disease states, thus creating a pivotal prognostic tool in inflammatory state treatment and ultimately mitigating severe mortality and morbidity.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 6","pages":"721-728"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659992/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Profiling of vWFA2 for Systemic Inflammatory State Detection.\",\"authors\":\"Bianca Elizabeth David, Sasya Madhurantakam, Jayanth Babu Karnam, Sriram Muthukumar, Shalini Prasad\",\"doi\":\"10.1021/acsmeasuresciau.4c00060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research aims to develop a portable biosensor device for quickly detecting vWFA2, a biomarker for inflammatory conditions. This sensor could dramatically change detection methods and lead us to improve the sensitivity of our tests to overcome the limitations of conventional detection methods. Our label-free biomolecular assay is constructed on an Au-ZnO electrode surface and uses electrochemical impedance spectroscopy (EIS) to measure the capacitive change in impedance, revealing the binding effects of the target vWFA2, to the capture probe. Our developed biosensor platform exhibits greater sensitivity and specificity, covering a wide dynamic range of 750-24,000 pg/mL and showing a strong correlation with inflammatory conditions. This sensor exhibited a greater accuracy ranging from 86-110% for the known spiked concentrations in nondiluted or modified plasma samples. This electrochemical sensor has the potential to advance point-of-care diagnostic methods due to its high sensitivity and rapid response time. The vision behind this research is to develop an electrochemical sensor that can rapidly and accurately detect disease states, thus creating a pivotal prognostic tool in inflammatory state treatment and ultimately mitigating severe mortality and morbidity.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"4 6\",\"pages\":\"721-728\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659992/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmeasuresciau.4c00060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmeasuresciau.4c00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Electrochemical Profiling of vWFA2 for Systemic Inflammatory State Detection.
This research aims to develop a portable biosensor device for quickly detecting vWFA2, a biomarker for inflammatory conditions. This sensor could dramatically change detection methods and lead us to improve the sensitivity of our tests to overcome the limitations of conventional detection methods. Our label-free biomolecular assay is constructed on an Au-ZnO electrode surface and uses electrochemical impedance spectroscopy (EIS) to measure the capacitive change in impedance, revealing the binding effects of the target vWFA2, to the capture probe. Our developed biosensor platform exhibits greater sensitivity and specificity, covering a wide dynamic range of 750-24,000 pg/mL and showing a strong correlation with inflammatory conditions. This sensor exhibited a greater accuracy ranging from 86-110% for the known spiked concentrations in nondiluted or modified plasma samples. This electrochemical sensor has the potential to advance point-of-care diagnostic methods due to its high sensitivity and rapid response time. The vision behind this research is to develop an electrochemical sensor that can rapidly and accurately detect disease states, thus creating a pivotal prognostic tool in inflammatory state treatment and ultimately mitigating severe mortality and morbidity.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.