分子结中的分子间相互作用和量子干涉效应。

IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY
ACS Nanoscience Au Pub Date : 2024-10-04 eCollection Date: 2024-12-18 DOI:10.1021/acsnanoscienceau.4c00041
Louise O H Hyllested, Idunn Prestholm, Gemma C Solomon
{"title":"分子结中的分子间相互作用和量子干涉效应。","authors":"Louise O H Hyllested, Idunn Prestholm, Gemma C Solomon","doi":"10.1021/acsnanoscienceau.4c00041","DOIUrl":null,"url":null,"abstract":"<p><p>Destructive quantum interference (DQI) leads to a decrease in the conductance of certain well-documented molecules. Experimental observations have revealed both direct and indirect manifestations of DQI, although a comprehensive understanding of the underlying causes of these distinct outcomes remains elusive. In both cases, DQI lowers the conductance, but only the direct case exhibits a characteristic V-shaped dip in differential conductance. Currently, the direct signature has exclusively been observed in monolayers and gated single-molecule systems. In this study, we employ density functional theory to elucidate a plausible explanation for the absence of a direct DQI signature in single molecules. Specifically, we attribute the direct DQI signature to a resonance shift induced by intermolecular interactions, which are absent in the individual molecules. By illustrating the impact of these intermolecular interactions, we emphasize the need for explicit treatment of intermolecular interactions when simulating monolayers.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 6","pages":"426-434"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659890/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intermolecular Interactions and Quantum Interference Effects in Molecular Junctions.\",\"authors\":\"Louise O H Hyllested, Idunn Prestholm, Gemma C Solomon\",\"doi\":\"10.1021/acsnanoscienceau.4c00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Destructive quantum interference (DQI) leads to a decrease in the conductance of certain well-documented molecules. Experimental observations have revealed both direct and indirect manifestations of DQI, although a comprehensive understanding of the underlying causes of these distinct outcomes remains elusive. In both cases, DQI lowers the conductance, but only the direct case exhibits a characteristic V-shaped dip in differential conductance. Currently, the direct signature has exclusively been observed in monolayers and gated single-molecule systems. In this study, we employ density functional theory to elucidate a plausible explanation for the absence of a direct DQI signature in single molecules. Specifically, we attribute the direct DQI signature to a resonance shift induced by intermolecular interactions, which are absent in the individual molecules. By illustrating the impact of these intermolecular interactions, we emphasize the need for explicit treatment of intermolecular interactions when simulating monolayers.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"4 6\",\"pages\":\"426-434\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659890/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnanoscienceau.4c00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsnanoscienceau.4c00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

破坏性量子干涉(DQI)导致某些已知分子的电导率下降。实验观察已经揭示了DQI的直接和间接表现,尽管对这些不同结果的潜在原因的全面理解仍然难以捉摸。在这两种情况下,DQI都降低了电导,但只有直接情况下,差分电导表现出典型的v型下降。目前,直接签名只在单层和门控单分子体系中观察到。在本研究中,我们采用密度泛函理论来阐明单个分子中缺乏直接DQI特征的合理解释。具体地说,我们将直接DQI特征归因于分子间相互作用引起的共振位移,这在单个分子中是不存在的。通过说明这些分子间相互作用的影响,我们强调在模拟单层时需要明确处理分子间相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intermolecular Interactions and Quantum Interference Effects in Molecular Junctions.

Destructive quantum interference (DQI) leads to a decrease in the conductance of certain well-documented molecules. Experimental observations have revealed both direct and indirect manifestations of DQI, although a comprehensive understanding of the underlying causes of these distinct outcomes remains elusive. In both cases, DQI lowers the conductance, but only the direct case exhibits a characteristic V-shaped dip in differential conductance. Currently, the direct signature has exclusively been observed in monolayers and gated single-molecule systems. In this study, we employ density functional theory to elucidate a plausible explanation for the absence of a direct DQI signature in single molecules. Specifically, we attribute the direct DQI signature to a resonance shift induced by intermolecular interactions, which are absent in the individual molecules. By illustrating the impact of these intermolecular interactions, we emphasize the need for explicit treatment of intermolecular interactions when simulating monolayers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信