Zhaohong Sun, Carlos Mora Perez, Oleg V Prezhdo, Richard L Brutchey
{"title":"胶体AInSe2 (A = K, Rb, Cs)纳米晶体及能带结构可调","authors":"Zhaohong Sun, Carlos Mora Perez, Oleg V Prezhdo, Richard L Brutchey","doi":"10.1021/acsnanoscienceau.4c00022","DOIUrl":null,"url":null,"abstract":"<p><p>Wide band gap AInSe<sub>2</sub> (A = K, Rb, Cs) is an important interlayer material for improving the efficiency of Cu(In,Ga)(S,Se)<sub>2</sub> (CIGS) solar cells. Compared to high-vacuum deposition and solid-state synthesis, a less energy-intensive method is of interest for its fabrication. Herein, we present the rapid, low-temperature colloidal synthesis of AInSe<sub>2</sub> nanocrystals that opens a pathway for convenient solution processing. The crystal structures and electronic band structures of the nanocrystals were studied, and their particle morphology was found to be dependent on the choice of alkali metal and selenium precursors. Homogeneous solid solution (K,Rb,Cs)InSe<sub>2</sub> nanocrystals were synthesized using a mixture of alkali metal precursors. Their compositions, lattice parameters, and band gaps were easily tuned based on the K:Rb:Cs precursor ratio, providing potential for interface engineering of CIGS nanocrystal-based solar cells.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"4 6","pages":"381-390"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659892/pdf/","citationCount":"0","resultStr":"{\"title\":\"Colloidal AInSe<sub>2</sub> (A = K, Rb, Cs) Nanocrystals with Tunable Crystal and Band Structures.\",\"authors\":\"Zhaohong Sun, Carlos Mora Perez, Oleg V Prezhdo, Richard L Brutchey\",\"doi\":\"10.1021/acsnanoscienceau.4c00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wide band gap AInSe<sub>2</sub> (A = K, Rb, Cs) is an important interlayer material for improving the efficiency of Cu(In,Ga)(S,Se)<sub>2</sub> (CIGS) solar cells. Compared to high-vacuum deposition and solid-state synthesis, a less energy-intensive method is of interest for its fabrication. Herein, we present the rapid, low-temperature colloidal synthesis of AInSe<sub>2</sub> nanocrystals that opens a pathway for convenient solution processing. The crystal structures and electronic band structures of the nanocrystals were studied, and their particle morphology was found to be dependent on the choice of alkali metal and selenium precursors. Homogeneous solid solution (K,Rb,Cs)InSe<sub>2</sub> nanocrystals were synthesized using a mixture of alkali metal precursors. Their compositions, lattice parameters, and band gaps were easily tuned based on the K:Rb:Cs precursor ratio, providing potential for interface engineering of CIGS nanocrystal-based solar cells.</p>\",\"PeriodicalId\":29799,\"journal\":{\"name\":\"ACS Nanoscience Au\",\"volume\":\"4 6\",\"pages\":\"381-390\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659892/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nanoscience Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnanoscienceau.4c00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsnanoscienceau.4c00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Colloidal AInSe2 (A = K, Rb, Cs) Nanocrystals with Tunable Crystal and Band Structures.
Wide band gap AInSe2 (A = K, Rb, Cs) is an important interlayer material for improving the efficiency of Cu(In,Ga)(S,Se)2 (CIGS) solar cells. Compared to high-vacuum deposition and solid-state synthesis, a less energy-intensive method is of interest for its fabrication. Herein, we present the rapid, low-temperature colloidal synthesis of AInSe2 nanocrystals that opens a pathway for convenient solution processing. The crystal structures and electronic band structures of the nanocrystals were studied, and their particle morphology was found to be dependent on the choice of alkali metal and selenium precursors. Homogeneous solid solution (K,Rb,Cs)InSe2 nanocrystals were synthesized using a mixture of alkali metal precursors. Their compositions, lattice parameters, and band gaps were easily tuned based on the K:Rb:Cs precursor ratio, providing potential for interface engineering of CIGS nanocrystal-based solar cells.
期刊介绍:
ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.