土壤分离芽孢杆菌降解有机磷杀虫剂的研究。

IF 3.5 4区 生物学 Q2 MICROBIOLOGY
Subramanian Muthukumaravel, Balakrishnan Sivalaxmi, Shriram Ananganallur Nagarajan, Natesan Sivakumar, Ashwani Kumar, Sugeerappa Laxmanappa Hoti
{"title":"土壤分离芽孢杆菌降解有机磷杀虫剂的研究。","authors":"Subramanian Muthukumaravel, Balakrishnan Sivalaxmi, Shriram Ananganallur Nagarajan, Natesan Sivakumar, Ashwani Kumar, Sugeerappa Laxmanappa Hoti","doi":"10.1002/jobm.202400597","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the biodegradation of methyl parathion, an organophosphate pesticide used in paddy fields. Microbial degradation transforms toxic pesticides into less harmful compounds, influenced by the microbial community in the soil. To isolate different microbial colonies, soil samples from an organophosphorus-treated groundnut field were plated on nutrient agar and MSM with 1% glucose and 0.25 mM methyl parathion. Biodegradation efficiency was determined by estimating the OP hydrolase enzyme activity spectrophotometrically. HPLC was used to quantify residual methyl parathion concentrations in the culture medium. The identified isolate effectively degraded methyl parathion in MSM with 0.25 mM methyl parathion which showed peak hydrolase activity (2.02 µmol/min/mg) after 96 h of incubation and the residual methyl parathion level was determined as 6.2 µmol by HPLC quantification. The efficient isolate was identified as Bacillus cereus by using a 16S rRNA molecular marker and the sequence was subjected to MEGA11 phylogenetic tree construction. The results show that the SM6 clade shared with B. cereus 16S rRNA sequence. B. cereus (SM6) showed substantial enzyme activity and the specific reported opdA gene-coded protein is involved in ATP hydrolysis. This OP hydrolase makes it a strong candidate for bioremediation of methyl parathion. Molecular analysis suggested that the opdA gene, likely chromosomally located, plays a key role in degradation, with potential involvement of the \"Cell division protein FtsK\" gene responsible for hydrolase activity. Organophosphorus compounds, widely used in agriculture, pose environmental concerns due to their persistence. This study focuses on isolating pesticide-degrading bacteria to expedite bioremediation, aiming for efficient degradation. This study highlights the cross-adaptation phenomenon, where B. cereus strains degrade similar compounds, improving bioremediation strategies.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400597"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradation of Organophosphorus Insecticides by Bacillus Species Isolated From Soil.\",\"authors\":\"Subramanian Muthukumaravel, Balakrishnan Sivalaxmi, Shriram Ananganallur Nagarajan, Natesan Sivakumar, Ashwani Kumar, Sugeerappa Laxmanappa Hoti\",\"doi\":\"10.1002/jobm.202400597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the biodegradation of methyl parathion, an organophosphate pesticide used in paddy fields. Microbial degradation transforms toxic pesticides into less harmful compounds, influenced by the microbial community in the soil. To isolate different microbial colonies, soil samples from an organophosphorus-treated groundnut field were plated on nutrient agar and MSM with 1% glucose and 0.25 mM methyl parathion. Biodegradation efficiency was determined by estimating the OP hydrolase enzyme activity spectrophotometrically. HPLC was used to quantify residual methyl parathion concentrations in the culture medium. The identified isolate effectively degraded methyl parathion in MSM with 0.25 mM methyl parathion which showed peak hydrolase activity (2.02 µmol/min/mg) after 96 h of incubation and the residual methyl parathion level was determined as 6.2 µmol by HPLC quantification. The efficient isolate was identified as Bacillus cereus by using a 16S rRNA molecular marker and the sequence was subjected to MEGA11 phylogenetic tree construction. The results show that the SM6 clade shared with B. cereus 16S rRNA sequence. B. cereus (SM6) showed substantial enzyme activity and the specific reported opdA gene-coded protein is involved in ATP hydrolysis. This OP hydrolase makes it a strong candidate for bioremediation of methyl parathion. Molecular analysis suggested that the opdA gene, likely chromosomally located, plays a key role in degradation, with potential involvement of the \\\"Cell division protein FtsK\\\" gene responsible for hydrolase activity. Organophosphorus compounds, widely used in agriculture, pose environmental concerns due to their persistence. This study focuses on isolating pesticide-degrading bacteria to expedite bioremediation, aiming for efficient degradation. This study highlights the cross-adaptation phenomenon, where B. cereus strains degrade similar compounds, improving bioremediation strategies.</p>\",\"PeriodicalId\":15101,\"journal\":{\"name\":\"Journal of Basic Microbiology\",\"volume\":\" \",\"pages\":\"e2400597\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jobm.202400597\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400597","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究了水田中有机磷农药甲基对硫磷的生物降解。受土壤中微生物群落的影响,微生物降解将有毒农药转化为危害较小的化合物。为了分离不同的微生物菌落,将有机磷处理过的花生田土壤样品分别镀在营养琼脂和含有1%葡萄糖和0.25 mM甲基对硫磷的MSM上。通过分光光度法测定OP水解酶活性测定其生物降解效率。采用高效液相色谱法测定培养基中甲基对硫磷残留量。鉴定出的分离菌株对甲基对硫磷在MSM中有效降解0.25 mM的甲基对硫磷,培养96 h后水解酶活性达到峰值(2.02µmol/min/mg),高效液相色谱法测定残留甲基对硫磷水平为6.2µmol。利用16S rRNA分子标记鉴定该高效分离物为蜡样芽孢杆菌,并进行MEGA11系统发育树序列构建。结果表明SM6分支与蜡样芽孢杆菌16S rRNA序列相同。蜡样芽孢杆菌(SM6)显示出大量的酶活性,并且报道的特异性opdA基因编码蛋白参与ATP水解。该OP水解酶是甲基对硫磷生物修复的有力候选酶。分子分析表明,opdA基因可能位于染色体上,在降解过程中起关键作用,可能与负责水解酶活性的“细胞分裂蛋白FtsK”基因有关。有机磷化合物广泛应用于农业,由于其持久性而引起环境问题。本研究旨在分离农药降解菌,加速生物修复,以达到高效降解农药的目的。这项研究强调了交叉适应现象,蜡样芽孢杆菌菌株降解类似的化合物,改进了生物修复策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biodegradation of Organophosphorus Insecticides by Bacillus Species Isolated From Soil.

This study investigates the biodegradation of methyl parathion, an organophosphate pesticide used in paddy fields. Microbial degradation transforms toxic pesticides into less harmful compounds, influenced by the microbial community in the soil. To isolate different microbial colonies, soil samples from an organophosphorus-treated groundnut field were plated on nutrient agar and MSM with 1% glucose and 0.25 mM methyl parathion. Biodegradation efficiency was determined by estimating the OP hydrolase enzyme activity spectrophotometrically. HPLC was used to quantify residual methyl parathion concentrations in the culture medium. The identified isolate effectively degraded methyl parathion in MSM with 0.25 mM methyl parathion which showed peak hydrolase activity (2.02 µmol/min/mg) after 96 h of incubation and the residual methyl parathion level was determined as 6.2 µmol by HPLC quantification. The efficient isolate was identified as Bacillus cereus by using a 16S rRNA molecular marker and the sequence was subjected to MEGA11 phylogenetic tree construction. The results show that the SM6 clade shared with B. cereus 16S rRNA sequence. B. cereus (SM6) showed substantial enzyme activity and the specific reported opdA gene-coded protein is involved in ATP hydrolysis. This OP hydrolase makes it a strong candidate for bioremediation of methyl parathion. Molecular analysis suggested that the opdA gene, likely chromosomally located, plays a key role in degradation, with potential involvement of the "Cell division protein FtsK" gene responsible for hydrolase activity. Organophosphorus compounds, widely used in agriculture, pose environmental concerns due to their persistence. This study focuses on isolating pesticide-degrading bacteria to expedite bioremediation, aiming for efficient degradation. This study highlights the cross-adaptation phenomenon, where B. cereus strains degrade similar compounds, improving bioremediation strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Basic Microbiology
Journal of Basic Microbiology 生物-微生物学
CiteScore
6.10
自引率
0.00%
发文量
134
审稿时长
1.8 months
期刊介绍: The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions. Papers published deal with: microbial interactions (pathogenic, mutualistic, environmental), ecology, physiology, genetics and cell biology/development, new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications) novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信