棕榈酰乙醇酰胺(PEA)治疗神经性疼痛的机制及临床应用。

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Ardra Das, Preetha Balakrishnan
{"title":"棕榈酰乙醇酰胺(PEA)治疗神经性疼痛的机制及临床应用。","authors":"Ardra Das, Preetha Balakrishnan","doi":"10.1007/s10787-024-01623-8","DOIUrl":null,"url":null,"abstract":"<p><p>Palmitoylethanolamide (PEA) is emerging as a promising therapeutic agent for neuropathic and other pain-related conditions. This naturally occurring fatty acid has drawn interest because of its ability to regulate pain and inflammation. Initially identified in food sources, PEA has been the subject of extensive research to elucidate its properties, efficacy, and clinical applications. PEA primarily exerts its effects through interaction with its primary receptor PPAR α, this interaction influences pain signalling pathways and neuroinflammatory processes by modulating the synthesis of pro-inflammatory cytokines, mast cell degranulation, microglial activation, and decrease of oxidative stress. PEA's interaction with endocannabinoid receptors decreases the inflammatory cytokine and chemokine production and thereby a descending pain sensation. The pharmacological and pharmacokinetic characteristics of PEA are examined in this paper, along with its potential for efficiency when used in in combination additional therapies in a variety of neurodegenerative disease models, including multiple sclerosis, Parkinson's disease, and Alzheimer's. Experimental evidence shows that PEA not only reduces pain and inflammation but also lowers the need for higher dosages of other drugs hence minimizing the risk of drug toxicity. The bioavailability of PEA has been enhanced by recent technological developments, which emphasize continuous research efforts to maximize PEA's therapeutic potential in pain treatment and associated medical sectors.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms and clinical applications of palmitoylethanolamide (PEA) in the treatment of neuropathic pain.\",\"authors\":\"Ardra Das, Preetha Balakrishnan\",\"doi\":\"10.1007/s10787-024-01623-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Palmitoylethanolamide (PEA) is emerging as a promising therapeutic agent for neuropathic and other pain-related conditions. This naturally occurring fatty acid has drawn interest because of its ability to regulate pain and inflammation. Initially identified in food sources, PEA has been the subject of extensive research to elucidate its properties, efficacy, and clinical applications. PEA primarily exerts its effects through interaction with its primary receptor PPAR α, this interaction influences pain signalling pathways and neuroinflammatory processes by modulating the synthesis of pro-inflammatory cytokines, mast cell degranulation, microglial activation, and decrease of oxidative stress. PEA's interaction with endocannabinoid receptors decreases the inflammatory cytokine and chemokine production and thereby a descending pain sensation. The pharmacological and pharmacokinetic characteristics of PEA are examined in this paper, along with its potential for efficiency when used in in combination additional therapies in a variety of neurodegenerative disease models, including multiple sclerosis, Parkinson's disease, and Alzheimer's. Experimental evidence shows that PEA not only reduces pain and inflammation but also lowers the need for higher dosages of other drugs hence minimizing the risk of drug toxicity. The bioavailability of PEA has been enhanced by recent technological developments, which emphasize continuous research efforts to maximize PEA's therapeutic potential in pain treatment and associated medical sectors.</p>\",\"PeriodicalId\":13551,\"journal\":{\"name\":\"Inflammopharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10787-024-01623-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-024-01623-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

棕榈酰乙醇酰胺(PEA)作为一种治疗神经性疾病和其他疼痛相关疾病的有前景的药物正在出现。这种天然存在的脂肪酸因其调节疼痛和炎症的能力而引起了人们的兴趣。PEA最初是在食物来源中发现的,现已成为广泛研究的主题,以阐明其特性、功效和临床应用。PEA主要通过与其主要受体PPAR α的相互作用发挥作用,这种相互作用通过调节促炎细胞因子的合成、肥大细胞脱颗粒、小胶质细胞的激活和氧化应激的减少来影响疼痛信号通路和神经炎症过程。PEA与内源性大麻素受体的相互作用减少炎症细胞因子和趋化因子的产生,从而降低疼痛感觉。本文研究了PEA的药理学和药代动力学特征,以及它在多种神经退行性疾病模型(包括多发性硬化症、帕金森病和阿尔茨海默病)中联合其他治疗时的效率潜力。实验证据表明,PEA不仅可以减轻疼痛和炎症,还可以降低对其他高剂量药物的需求,从而最大限度地减少药物毒性的风险。PEA的生物利用度已经被最近的技术发展所提高,这强调了持续的研究努力,以最大限度地发挥PEA在疼痛治疗和相关医疗领域的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanisms and clinical applications of palmitoylethanolamide (PEA) in the treatment of neuropathic pain.

Palmitoylethanolamide (PEA) is emerging as a promising therapeutic agent for neuropathic and other pain-related conditions. This naturally occurring fatty acid has drawn interest because of its ability to regulate pain and inflammation. Initially identified in food sources, PEA has been the subject of extensive research to elucidate its properties, efficacy, and clinical applications. PEA primarily exerts its effects through interaction with its primary receptor PPAR α, this interaction influences pain signalling pathways and neuroinflammatory processes by modulating the synthesis of pro-inflammatory cytokines, mast cell degranulation, microglial activation, and decrease of oxidative stress. PEA's interaction with endocannabinoid receptors decreases the inflammatory cytokine and chemokine production and thereby a descending pain sensation. The pharmacological and pharmacokinetic characteristics of PEA are examined in this paper, along with its potential for efficiency when used in in combination additional therapies in a variety of neurodegenerative disease models, including multiple sclerosis, Parkinson's disease, and Alzheimer's. Experimental evidence shows that PEA not only reduces pain and inflammation but also lowers the need for higher dosages of other drugs hence minimizing the risk of drug toxicity. The bioavailability of PEA has been enhanced by recent technological developments, which emphasize continuous research efforts to maximize PEA's therapeutic potential in pain treatment and associated medical sectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inflammopharmacology
Inflammopharmacology IMMUNOLOGYTOXICOLOGY-TOXICOLOGY
CiteScore
8.00
自引率
3.40%
发文量
200
期刊介绍: Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas: -Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states -Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs -Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents -Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain -Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs -Muscle-immune interactions during inflammation [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信