突尼斯COVID-19患者的氧化应激谱和自身抗体产生

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-02-01 Epub Date: 2024-12-18 DOI:10.1007/s10616-024-00683-6
Bochra Gargouri, Ichrak Ben Amor, Yosra Ramma, Riad Ben Mansour, Ahmed Bayoudh, Imen Kallel, Hammadi Attia
{"title":"突尼斯COVID-19患者的氧化应激谱和自身抗体产生","authors":"Bochra Gargouri, Ichrak Ben Amor, Yosra Ramma, Riad Ben Mansour, Ahmed Bayoudh, Imen Kallel, Hammadi Attia","doi":"10.1007/s10616-024-00683-6","DOIUrl":null,"url":null,"abstract":"<p><p>The clinical evidence, complications and the pathogenesis of COVID-19 are not clearly understood. In COVID-19 patients, cellular immune response biomarkers and oxidative stress parameters have been used as gravity markers. Indeed, oxidative stress has been proposed to play an essential role in the genesis of COVID-19. In the present research, we investigated lipid peroxidation, protein oxidation, superoxide dismutase activity and the production of auto-antibodies against superoxide dismutase, in the blood of Tunisian patients with corona virus. To evaluate lipid peroxidation, plasma malondialdehyde and conjugated dienes, have been determined in 69 corona virus patients and 30 controls. To determine protein oxidation the thiol level was measured. Plasma superoxide dismutase activity has been measured in 30 corona virus patients and 30 controls on one hand. Utilizing a standard enzyme-linked immunosorbent assay, the level of immunoglobulin G (IgG), and M (IgM) directed against superoxide dismutase was evaluated. To investigate the implication of auto-antibody production in COVID-19 patients in the generation of oxidative stress, a correlation study between auto-antibodies production and oxidative stress parameters was performed. High levels of both malondialdehyde and conjugated dienes were found in the plasma of patients (p < 0.001, respectively). Protein oxidation was confirmed by the high level of thiol (p < 0.001). Superoxide dismutase activity was not significantly lower in COVID-19 patients (p > 0.05). The level of immunoglobulin G (IgG), and M (IgM) directed against superoxide dismutase is significantly higher in COVID-19 patients than in control group (p < 0.001 respectively). Statistical analyses have demonstrated a positive correlation between superoxide dismutase activity and IgM and IgG isotypes antibodies level against superoxide dismutase (p < 0.001). A strong positive correlation was observed between IgG and malondialdehyde level in all cases (r = 0.368; p ≤ 0.01). In addition, a significant positive correlation was noted between IgM and malondialdehyde (r = 0.290; p = 0.024). Similarly, two significant positive relationship was found between IgG / conjugated dienes (r = 0.356; p = 0.005) and between IgM / conjugated dienes (r = 0.285; p = 0.027).</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 1","pages":"22"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655737/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oxidative stress profile and auto-antibodies production in Tunisian patients with COVID-19.\",\"authors\":\"Bochra Gargouri, Ichrak Ben Amor, Yosra Ramma, Riad Ben Mansour, Ahmed Bayoudh, Imen Kallel, Hammadi Attia\",\"doi\":\"10.1007/s10616-024-00683-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The clinical evidence, complications and the pathogenesis of COVID-19 are not clearly understood. In COVID-19 patients, cellular immune response biomarkers and oxidative stress parameters have been used as gravity markers. Indeed, oxidative stress has been proposed to play an essential role in the genesis of COVID-19. In the present research, we investigated lipid peroxidation, protein oxidation, superoxide dismutase activity and the production of auto-antibodies against superoxide dismutase, in the blood of Tunisian patients with corona virus. To evaluate lipid peroxidation, plasma malondialdehyde and conjugated dienes, have been determined in 69 corona virus patients and 30 controls. To determine protein oxidation the thiol level was measured. Plasma superoxide dismutase activity has been measured in 30 corona virus patients and 30 controls on one hand. Utilizing a standard enzyme-linked immunosorbent assay, the level of immunoglobulin G (IgG), and M (IgM) directed against superoxide dismutase was evaluated. To investigate the implication of auto-antibody production in COVID-19 patients in the generation of oxidative stress, a correlation study between auto-antibodies production and oxidative stress parameters was performed. High levels of both malondialdehyde and conjugated dienes were found in the plasma of patients (p < 0.001, respectively). Protein oxidation was confirmed by the high level of thiol (p < 0.001). Superoxide dismutase activity was not significantly lower in COVID-19 patients (p > 0.05). The level of immunoglobulin G (IgG), and M (IgM) directed against superoxide dismutase is significantly higher in COVID-19 patients than in control group (p < 0.001 respectively). Statistical analyses have demonstrated a positive correlation between superoxide dismutase activity and IgM and IgG isotypes antibodies level against superoxide dismutase (p < 0.001). A strong positive correlation was observed between IgG and malondialdehyde level in all cases (r = 0.368; p ≤ 0.01). In addition, a significant positive correlation was noted between IgM and malondialdehyde (r = 0.290; p = 0.024). Similarly, two significant positive relationship was found between IgG / conjugated dienes (r = 0.356; p = 0.005) and between IgM / conjugated dienes (r = 0.285; p = 0.027).</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"77 1\",\"pages\":\"22\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655737/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-024-00683-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00683-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

COVID-19的临床证据、并发症和发病机制尚不清楚。在COVID-19患者中,细胞免疫反应生物标志物和氧化应激参数被用作重力标志物。事实上,氧化应激被认为在COVID-19的发生中发挥了重要作用。在本研究中,我们研究了突尼斯冠状病毒患者血液中的脂质过氧化、蛋白质氧化、超氧化物歧化酶活性和抗超氧化物歧化酶自身抗体的产生。为评价脂质过氧化、血浆丙二醛和偶联二烯在69名冠状病毒患者和30名对照组中的含量。为了测定蛋白质氧化,测定了硫醇水平。测量了30例冠状病毒患者和30例对照组的血浆超氧化物歧化酶活性。利用标准的酶联免疫吸附试验,评估针对超氧化物歧化酶的免疫球蛋白G (IgG)和M (IgM)的水平。为了探讨自身抗体产生在COVID-19患者氧化应激产生中的意义,我们进行了自身抗体产生与氧化应激参数之间的相关性研究。患者血浆中丙二醛和共轭二烯含量均较高(p < 0.05)。针对超氧化物歧化酶的免疫球蛋白G (IgG)和M (IgM)水平在COVID-19患者中显著高于对照组(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxidative stress profile and auto-antibodies production in Tunisian patients with COVID-19.

The clinical evidence, complications and the pathogenesis of COVID-19 are not clearly understood. In COVID-19 patients, cellular immune response biomarkers and oxidative stress parameters have been used as gravity markers. Indeed, oxidative stress has been proposed to play an essential role in the genesis of COVID-19. In the present research, we investigated lipid peroxidation, protein oxidation, superoxide dismutase activity and the production of auto-antibodies against superoxide dismutase, in the blood of Tunisian patients with corona virus. To evaluate lipid peroxidation, plasma malondialdehyde and conjugated dienes, have been determined in 69 corona virus patients and 30 controls. To determine protein oxidation the thiol level was measured. Plasma superoxide dismutase activity has been measured in 30 corona virus patients and 30 controls on one hand. Utilizing a standard enzyme-linked immunosorbent assay, the level of immunoglobulin G (IgG), and M (IgM) directed against superoxide dismutase was evaluated. To investigate the implication of auto-antibody production in COVID-19 patients in the generation of oxidative stress, a correlation study between auto-antibodies production and oxidative stress parameters was performed. High levels of both malondialdehyde and conjugated dienes were found in the plasma of patients (p < 0.001, respectively). Protein oxidation was confirmed by the high level of thiol (p < 0.001). Superoxide dismutase activity was not significantly lower in COVID-19 patients (p > 0.05). The level of immunoglobulin G (IgG), and M (IgM) directed against superoxide dismutase is significantly higher in COVID-19 patients than in control group (p < 0.001 respectively). Statistical analyses have demonstrated a positive correlation between superoxide dismutase activity and IgM and IgG isotypes antibodies level against superoxide dismutase (p < 0.001). A strong positive correlation was observed between IgG and malondialdehyde level in all cases (r = 0.368; p ≤ 0.01). In addition, a significant positive correlation was noted between IgM and malondialdehyde (r = 0.290; p = 0.024). Similarly, two significant positive relationship was found between IgG / conjugated dienes (r = 0.356; p = 0.005) and between IgM / conjugated dienes (r = 0.285; p = 0.027).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信