评估潜伏期变异对脑电分类器的影响——以人脸重复启动为例。

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2024-12-01 Epub Date: 2024-10-21 DOI:10.1007/s11571-024-10181-2
Yilin Li, Werner Sommer, Liang Tian, Changsong Zhou
{"title":"评估潜伏期变异对脑电分类器的影响——以人脸重复启动为例。","authors":"Yilin Li, Werner Sommer, Liang Tian, Changsong Zhou","doi":"10.1007/s11571-024-10181-2","DOIUrl":null,"url":null,"abstract":"<p><p>Data-driven strategies have been widely used to distinguish experimental effects on single-trial EEG signals. However, how latency variability, such as within-condition jitter or latency shifts between conditions, affects the performance of EEG classifiers has not been well investigated. Without explicitly considering and disentangling such attributes of single trials, neural network-based classifiers have limitations in measuring their contributions. Inspired by domain knowledge of subcomponent latency and amplitude from traditional cognitive neuroscience, this study applies a stepwise latency correction method on single trials to control for their contributions to classifier behavior. As a case study demonstrating the value of this method, we measure repetition priming effects of faces, which induce large reaction time differences, latency shifts, and amplitude effects in averaged event-related potentials. The results show that within-condition jitter negatively impacts classifier performance, but between-condition latency shifts improve accuracy, whereas genuine amplitude differences have no significant influence. While demonstrated in the case of priming effects, this methodology can be generalized to experiments involving many kinds of time-varying signals to account for the contributions of latency variability to classifier performance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-024-10181-2.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"4055-4069"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655819/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing the influence of latency variability on EEG classifiers - a case study of face repetition priming.\",\"authors\":\"Yilin Li, Werner Sommer, Liang Tian, Changsong Zhou\",\"doi\":\"10.1007/s11571-024-10181-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data-driven strategies have been widely used to distinguish experimental effects on single-trial EEG signals. However, how latency variability, such as within-condition jitter or latency shifts between conditions, affects the performance of EEG classifiers has not been well investigated. Without explicitly considering and disentangling such attributes of single trials, neural network-based classifiers have limitations in measuring their contributions. Inspired by domain knowledge of subcomponent latency and amplitude from traditional cognitive neuroscience, this study applies a stepwise latency correction method on single trials to control for their contributions to classifier behavior. As a case study demonstrating the value of this method, we measure repetition priming effects of faces, which induce large reaction time differences, latency shifts, and amplitude effects in averaged event-related potentials. The results show that within-condition jitter negatively impacts classifier performance, but between-condition latency shifts improve accuracy, whereas genuine amplitude differences have no significant influence. While demonstrated in the case of priming effects, this methodology can be generalized to experiments involving many kinds of time-varying signals to account for the contributions of latency variability to classifier performance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-024-10181-2.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"18 6\",\"pages\":\"4055-4069\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655819/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10181-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10181-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

数据驱动策略被广泛用于区分单次脑电信号的实验效果。然而,延迟变化(如条件内抖动或条件之间的延迟变化)如何影响脑电分类器的性能尚未得到很好的研究。如果没有明确考虑和解开单个试验的这些属性,基于神经网络的分类器在衡量其贡献方面存在局限性。受传统认知神经科学中子分量潜伏期和幅度的领域知识的启发,本研究对单个试验应用逐步潜伏期校正方法来控制它们对分类器行为的贡献。作为证明该方法价值的案例研究,我们测量了面孔的重复启动效应,该效应诱导了大的反应时间差异、潜伏期偏移和平均事件相关电位的振幅效应。结果表明,条件内抖动对分类器性能有负面影响,而条件间延迟位移提高了分类器的准确率,而真实振幅差异对分类器的准确率没有显著影响。虽然在启动效应的情况下得到了证明,但这种方法可以推广到涉及多种时变信号的实验中,以解释延迟可变性对分类器性能的贡献。补充信息:在线版本包含补充资料,下载地址:10.1007/s11571-024-10181-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the influence of latency variability on EEG classifiers - a case study of face repetition priming.

Data-driven strategies have been widely used to distinguish experimental effects on single-trial EEG signals. However, how latency variability, such as within-condition jitter or latency shifts between conditions, affects the performance of EEG classifiers has not been well investigated. Without explicitly considering and disentangling such attributes of single trials, neural network-based classifiers have limitations in measuring their contributions. Inspired by domain knowledge of subcomponent latency and amplitude from traditional cognitive neuroscience, this study applies a stepwise latency correction method on single trials to control for their contributions to classifier behavior. As a case study demonstrating the value of this method, we measure repetition priming effects of faces, which induce large reaction time differences, latency shifts, and amplitude effects in averaged event-related potentials. The results show that within-condition jitter negatively impacts classifier performance, but between-condition latency shifts improve accuracy, whereas genuine amplitude differences have no significant influence. While demonstrated in the case of priming effects, this methodology can be generalized to experiments involving many kinds of time-varying signals to account for the contributions of latency variability to classifier performance.

Supplementary information: The online version contains supplementary material available at 10.1007/s11571-024-10181-2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信